Paramétrisation unifiée de la turbulence en régime partiellement couvert. Utilisation conjointe de l'entropie humide et des moments statistiques d'ordre trois.

J.-F. Geleyn, P. Marquet, I. Bašták-Ďurán, F. Váňa

Ateliers de Modélisation de l'Atmosphère, Toulouse, 23/01/2012

Cadre de l'exposé

- **Objectif final du travail en cours: unifier la paramétrisation de la turbulence humide (convection non-précipitante):**
 - depuis le cas sec jusqu'au cas complètement saturé;
 - entre les aspects 'diffusifs locaux' et 'advectifs sous-maille'.

Cadre de travail:

- pas de nombre de Richardson critique;
- prise en compte de l'anisotropie des mouvements turbulents (<w'.w'>≠2E/3);
- utilisation du budget de l'entropie humide spécifique (*exposé de P. Marquet*) pour différentier les termes d'évolution de la TKE
- prolongation de l'approche de Canuto et al. (2007) pour le lien entre termes de deuxième ordre (SOMs) et termes de troisième ordre (TOMs) afin de paramétriser le caractère 'non-local', d'abord en régime 'sec', puis en régime humide, <u>via l'item précédent</u>.

Ingrédients a-priori nécessaires: équation pronostique pour TKE, calcul <u>subséquent</u> des coefficients d'échange K_m (pour quantité de mouvement) et K_h (pour énergie et humidité) à partir de fonctions de stabilité 'en R_i ' (*QNSE / Mellor-Yamada modifié*), <u>filtrage</u> du système selon Redelsperger et al. (2001) et <u>influence directe</u> du caractère humide sur la longueur caractéristique L.

Caractère 'non-local' de certains mouvements turbulents

On sait depuis longtemps (Deardorff) que les seuls termes 'downgradient' ne peuvent représenter toute la complexité de la turbulence. Empiriquement on imagine que la 'déviation' devient encore plus importante en cas de nuages dans la CLP. Historiquement, on distingue quatre chemins pour tenir compte de ces faits:

- Modification du nombre de Richardson (a cadre 'sec' sinon inchangé) pour tenir compte de la condensation; on va essayer de montrer ici le *caractère erroné* de cette approche!
- La méthode Lappen & Randall de tout passer en flux de masse (*très chère*);
- Les méthodes mixtes (EDMF, EDKF, ...) associant une partie 'downgradient' et une partie 'flux de masse' (en général liée à la condensation); *pratique mais un peu arbitraire*;
- Le retour aux idées de Reynolds pour incorporer les effets des moments de troisième (et quatrième) ordre sur les moments de deuxième ordre; *le problème de l'inclusion des effets humides reste entier*.

Réduction de la complexité du passage 4^{ème} ordre (FOMs) => 3^{ème} ordre (TOMs)

third-order moments are taken to be the steady state solutions of Eqs. (2a)-(2c) of Appendix B, which, using the forth-order moments discussed in Appendix C, become (Cheng et al., 2005):

$$\overline{w^{3}} = -A_{1}\frac{\partial}{\partial z}\overline{w^{2}} - A_{2}\frac{\partial}{\partial z}\overline{w\theta} - A_{3}\frac{\partial}{\partial z}\overline{\theta^{2}}$$
(14a)

$$\overline{w^{2}\theta} = -A_{4}\frac{\partial}{\partial z}\overline{w^{2}} - A_{5}\frac{\partial}{\partial z}\overline{w\theta} - A_{6}\frac{\partial}{\partial z}\overline{\theta^{2}}$$
(14b)

$$\overline{w\theta^{2}} = -A_{7}\frac{\partial}{\partial z}\overline{w\theta} - A_{8}\frac{\partial}{\partial z}\overline{\theta^{2}}$$
(14c)

All the third-order moments exhibit a linear combination of the z-derivatives of the second-order moments, as first discussed in Canuto et al. (1994). In (14a–c), the "diffusivities" A's are given by $(\lambda = (1 - c_{11})g\alpha_T)$:

$$A_{1} = \left(a_{1}\overline{w^{2}} + a_{2}\lambda\tau\overline{w\theta}\right)\tau, \quad A_{2} = \left(a_{3}\overline{w^{2}} + a_{4}\lambda\tau\overline{w\theta}\right)\lambda\tau^{2}$$

$$A_{3} = \left(a_{5}\overline{w^{2}} + a_{6}\lambda\tau\overline{w\theta}\right)\lambda^{2}\tau^{3}, \quad A_{4} = a_{7}\tau\overline{w\theta}$$

$$A_{5} = \left(a_{8}\overline{w^{2}} + a_{9}\lambda\tau\overline{w\theta}\right)\tau, \quad A_{6} = \left(a_{10}\overline{w^{2}} + a_{11}\lambda\tau\overline{w\theta}\right)\lambda\tau^{2}$$

$$A_{7} = a_{12}\tau\overline{w\theta}, \quad A_{8} = \left(a_{13}\overline{w^{2}} + a_{14}\lambda\tau\overline{w\theta}\right)\tau$$
(14d)

The coefficients a_k 's in (14d) are listed in Table 1.

Even though Eqs. (14a)–(14d) are relatively simple and have been successfully tested against LES data (Cheng et al., 2005), more recently we have succeeded in reduing them even further without deteriorating the comparison with LES data. In fact, we have found the following simplified version of (14a)–(14d):

$$\overline{w^3} = -0.06g\alpha\tau^2\overline{w^2}\frac{\partial\overline{w\theta}}{\partial z}, \quad \overline{w^2\theta} = -0.3\tau\overline{w^2}\frac{\partial\overline{w\theta}}{\partial z}, \quad \overline{w\theta^2} = -\tau\overline{w\theta}\frac{\partial\overline{w\theta}}{\partial z}$$
(14e)

Validation de la simplification via données d'avion (points) et résultats LES (tiretés)

Canuto et al. (Ocean Modelling, 2007)

La qualité du 'fit' est excellente (à noter qu'il n'y a pas de paramètre de réglage pour le troisième ajustement, la forme analytique de <w'. θ '. θ '> étant imposée par le lien avec les termes de deuxième ordre (SOMs))

Problèmes pratique pour l'implémentation de la proposition de Canuto et al.

D'après le papier, le schéma SOMs+TOMs peut-être vu comme une correction à la solution SOMs seule (*les aspects 'humides' sont transparents à ce stade*). Mais:

- Il vaut mieux itérer une fois l'étape de correction;
- La simplification proposée suivant l'hypothèse 'tendance constante sur la verticale pour le calcul de base' est trop brutale => il y a aussi une composante 'locale' aux aspects TOMs (pas seulement 'flux de masse');
- On ne peut pas non plus calculer les termes supplémentaires sous 'hypothèse de stationnarité' => équilibre à obtenir entre les termes SOMs et TOMs dans l'algorithme même;
- Le solveur doit alors être particulièrement soigné pour éviter l'instabilité non-linéaire et/ou le syndrome de 'stiffness'.

Conséquence intéressante de ce qui précède: K_h est en multiplicateur de tout le système à résoudre pour $\partial \theta / \partial t$

Jeu d'équations de base 'SOMs+sec'

$$R_{if} = C_{3}R_{i} \frac{\phi_{3}(R_{i})}{\chi_{3}(R_{i})}$$
$$\chi_{3}(R_{i}) = \frac{1 - R_{if}/R}{1 - R_{if}}$$
$$\phi_{3}(R_{i}) = \frac{1 - R_{if}/R_{ifc}}{1 - R_{if}}$$

 C_3 : inverse du nombre de Prandtl à la neutralité

R : paramètre caractérisant l'anisotropie de la turbulence

 R_{ifc} : valeur critique du 'flux-Richardson number' (R_{if} à + ∞)

 $\begin{aligned} Plus \ l'équation \ pronostique \ de \ TKE \ (en \ 'E') \\ \frac{\partial E}{\partial t} = A_{dv}(E) + \frac{1}{\rho} \frac{\partial}{\partial z} \rho K_E \frac{\partial E}{\partial z} + K_m \Biggl[\left(\frac{\partial u}{\partial z} \right)^2 + \left(\frac{\partial v}{\partial z} \right)^2 \Biggr] - \frac{g}{\theta} K_h \frac{\partial \theta}{\partial z} - \frac{C_{\varepsilon} E^{3/2}}{L} \\ K_m &= C_K L \chi_3(R_i) \sqrt{E} \quad K_h = C_3 C_K L \phi_3(R_i) \sqrt{E} \\ K_E &= \sqrt{C_K (1 - R_{if}) / (C_{\varepsilon} \chi_3(R_i))} L \sqrt{E} \\ L \ length \ scale \quad C_K \ \& C_{\varepsilon} \ tuning \ parameters \quad R_{if} \ flux - Richardson \ number \end{aligned}$

Interprétations 'classiques' (sèches) Répétition de l'équation pronostique de TKE $\frac{\partial E}{\partial t} = A_{dv}(E) + \frac{1}{\rho} \frac{\partial}{\partial z} \rho K_E \frac{\partial E}{\partial z} + K_m \left[\left(\frac{\partial u}{\partial z} \right)^2 + \left(\frac{\partial v}{\partial z} \right)^2 \right] - \frac{g}{\theta} K_h \frac{\partial \theta}{\partial z} - \frac{C_{\varepsilon} E^{3/2}}{L}$ Développement des termes de production par cisaillement et de production/destruction par flotabilité ('terme de conversion') $K_m \left[\left(\frac{\partial u}{\partial z} \right)^2 + \left(\frac{\partial v}{\partial z} \right)^2 \right] - \frac{g}{\theta} K_h \frac{\partial \theta}{\partial z} \approx K_m S^2 \left[1 - \frac{K_h}{K_m} \frac{g}{\theta} \frac{\partial \theta}{\partial z} / S^2 \right]$ $= K_{m}S^{2} \left| 1 - \frac{K_{h}}{K} (N^{2} / S^{2}) \right| = K_{m}S^{2} \left[1 - \frac{K_{h}}{K} R_{i} \right]$ $=K_{m}S^{2}(1-R_{if})$

On établit un lien direct entre le nombre de Richardson, le nombre de Richardson-flux, le terme de conversion (<w'.ρ'>) et la stabilité statique (caractérisée par N²). Tout cela doit-il être conservé tel quel dans le cas 'humide' ?

l'équation d(TKE)/dt ?

Suite de l'interprétation

Le caractère bien mélangé de θ_s (dans ce cas extrême de Sc) indique que la 'turbulence humide' travaille (sans toujours y parvenir complètement bien sûr) à maximiser la part de la conversion énergétique totale de TKE liée au gradient de q_t (en 'neutralisant' la part 'entropique' autant que possible).

Equation TKE 'humide' (proposition)

On ré-écrit (symboliquement):

 $\frac{\partial E}{\partial t} = A_{dv}(E) + \frac{1}{\rho} \frac{\partial}{\partial z} \rho K_E \frac{\partial E}{\partial z} + K_m S^2 - \frac{g}{(\theta_s)_I} K_{hs} \frac{\partial (\theta_s)_I}{\partial z} - \frac{C_{\varepsilon} E^{3/2}}{L} - W_L$ $K_m = C_K L \chi_3(\mathbf{R}_i(C)) \sqrt{E} \quad K_{hs} = \mathbf{M}(C) C_3 C_K L \phi_3(\mathbf{R}_i^*) \sqrt{E} (\chi_3(\mathbf{R}_i(C)) / \chi_3(\mathbf{R}_i^*))$ $\mathbf{R}_i^* = (N_s^2) / S^2 \quad \mathbf{R}_i(C) = (N^2(C)) / S^2 \quad W_L = K_m S^2 R_{if}(C) - \frac{g}{(\theta_s)_I} K_{hs} \frac{\partial (\theta_s)_I}{\partial z}$

Et on résoud en trois temps:

- •Calcul de E^+ et de $K_{m/h}$ sur la base du R_i humide en $N^2(C)/S^2$, afin prendre en compte toutes les conversions de TKE
- •Re-calcul de K_{hs} sur la base du R_i 'entropique' en $N^2(\theta_s)/S^2$, pour viser la 'neutralité' de θ_s après diffusion

•Application de K_m et K_{hs} au transport de u, v, θ_l et q_t (et donc de θ_s). Le transport de $q_{l/i}$ et la modification associée aux TOMs s'appliquent ici, autour de la valeur de K_{hs}

Problèmes associés à cette définition de l'équation pronostique TKE `humide'

Quid de la quantité 'C'? On peut l'identifier avec une nébulosité de convection peu précipitante sur les 'half-levels' du modèle.

C' doit être connue au tout début du pas de temps. Le lien avec les caractéristiques de la turbulence ne sera pas facile à obtenir.

En plus de $N^2(\theta_s)$, on a aussi besoin de $N^2(C)$ pour certains calculs. On a donc deux BVF au carré dans cette configuration (attention aux confusions !).

Résultats (préliminaires, 'C' étant obtenu comme une nébulosité radiative)

- On constate une diminution des phénomènes de fibrillation, même lorsque la diffusion de q_l et q_i est activée
- L'usage de l'interprétation 'entropique' de la diffusion humide renforce les contrastes de stabilité statique sous et dans les inversions
- L'activation des calculs TOMs crée effectivement des 'thermiques' mais les rôles respectifs de la partie 'locale supplémentaire' et de la partie 'flux de masse' ne sont pas faciles à interpréter.

Diagnostic de `fibrillations' dans la CLP A=`old'+AFS; B=`old'+nAFS; C=p-TKE+AFS; D=`new'

Coupe CLP de la stabilité statique absolue A=Arpège; B=Alaro; C=`new' no-TOMs; D=`new'

Coupe CLP de la stabilité statique absolue A= no M/F part; B=no Jq_{I/i}; C=no-TOMs; D=`new' (ref.)

Conclusion

Il semble possible de traiter synthétiquement les aspects suivant de la 'diffusion turbulente':

– locaux et 'non-locaux';

- 'sec', 'partiellement couvert' et 'totalement saturé'.

Les problèmes physiques restant se concentrent alors sur (sauf mauvaise surprise toujours possible):

- La parameterisation définitive de 'C', à aborder
 probablement dans l'esprit du modèle de Tompkins (2002);
- Les deux 'paramètres de réglage' de la représentation compacte des TOMs;
- Le choix entre les fonctions de stabilité QNSE et de type Mellor-Yamada (et le 'tuning' des degrés de liberté physiques associés);
- La spécification de la longueur caractéristique L[Ri(C)].