

Rétroactions radiatives dans CNRM.CM5.1

Olivier Geoffroy, Aurore Voldoire, David Saint-Martin, David Salas Y Mélia, Stéphane Sénési, Antoinette Alias, Sophie Tytéca

AMA 2012

Plan

I) Concept de forçage radiatif, rétroactions radiatives et sensibilité climatique

II) Méthode des perturbations radiatives partielles

III) Résultats

IV) Effet de l'ajustement troposphérique

Concept de forçage radiatif, rétroactions radiatives, et sensibilité climatique

Sensibilité Climatique à l'Equilibre (ECS) Réponse Climatique Transitoire (TCR)

Rétroactions radiatives

(banquise, neige: fort albédo)

- Nuages (C) (effet de serre + effet parasol)

Méthode des Perturbations Radiatives Partielles (PRP)

(Wetherald and Manabe, 1988)

$$\Delta N = F + \left(\begin{array}{c} \frac{\partial N}{\partial T_{i}} \frac{\partial T_{i}}{\partial T} + \sum_{i} \frac{\partial N}{\partial x} \frac{\partial x}{\partial T} \\ \vdots \\ \lambda_{T} = \lambda_{P} + \lambda_{L}} \end{array} \right) \Delta T = F + \left(\lambda_{T} + \lambda_{W} + \lambda_{A} + \lambda_{C} \right) \Delta T = F + \left(\lambda_{T} + \lambda_{W} + \lambda_{A} + \lambda_{C} \right) \Delta T$$

Méthode des Perturbations Radiatives Partielles (PRP)

(Wetherald and Manabe, 1988)

$$\Delta N = F + \left(\begin{array}{c} \frac{\partial N}{\partial T_{i}} \frac{\partial T_{i}}{\partial T} + \sum_{i} \frac{\partial N}{\partial x} \frac{\partial x}{\partial T} \\ \vdots \\ \lambda_{T} = \lambda_{P} + \lambda_{L}} \end{array} \right) \Delta T = F + \left(\begin{array}{c} \lambda_{T} + \lambda_{W} + \lambda_{A} + \lambda_{C} \end{array} \right) \Delta T = F + \left(\begin{array}{c} \lambda_{T} + \lambda_{W} + \lambda_{A} + \lambda_{C} \end{array} \right) \Delta T$$

Méthode des

Perturbations Radiatives Partielles (PRP)

(Wetherald and Manabe, 1988)

- Simulations: AB4CO2 et contrôle
- Période de temps: max 10 ans.
- 3H (tests de sensibilité).
- Moyenne Forward et Reverse: élimine biais dû à la décorrélation des champs

(Colman et al., 2003)

- Tropopause (même définition que Soden and Held, 2004):

Résultats PRP (TOA).

Comparaison AR4 des λ_i en W m⁻² K⁻¹.

(Fig. 8.14 de l'AR4)

Résultats consistants avec les études multimodèles.

Résultats PRP - sensibilité

÷	$Flux \qquad Frequency \qquad Period$										
	Flux location	Run	Frequency (H)	Period (y)	L	W	А	С			
				10	-0.42	2.00	0.41	0.28			
			3	6	-0.44	2.00	0.41	0.28			
		ARACON		3	-0.44	2.02	0.41	0.27			
	Tropopause	AD4CO2		10	-0.44	2.02	0.41	0.29			
			6	6	-0.43	2.01	0.42	0.29			
			0	3	-0.42	2.00	0.43	0.28			
		1% CO2		6	-0.43	1.96	0.43	0.27			
			3	10	-0.47	1.67	0.40	0.28			
				6	-0.49	1.68	0.40	0.27			
	TO 4	ARACOZ		3	-0.49	1.69	0.40	0.26			
	IUA	AD4CO2		10	-0.48	1.67	0.41	0.28			
			6	6	-0.47	1.67	0.41	0.28			
			6	3	-0.47	1.66	0.42	0.24			
		1% CO2		6	-0.48	1.65	0.43	0.26			
					Lapse rate	Water vapor	Surface Albedo	Cloud			

- Pas ou peu de sensibilité au temps de simulation, à la fréquence temporelle, au type de simulation

- λ_A , λ_C identiques au TOA et à la tropopause.
- λ_w et λ_L différents au TOA et à la tropopause.

Stratosphère non équilibrée radiativement.

Résultats PRP

(Tropopause)

		Р	L	W	Α	C	TOTAL
Forward	LW	-3.33	- 0.70	1.95	0	0.44	
PRP	SW	0.03	0.00	0.29	0.45	0.01	
Reverse	LW	-3.03	- 0.13	1.51	0	0.19	
PRP	SW	-0.04	0.00	0.26	0.38	-0.07	
	LW	-3.18	- 0.42	1.73	0	0.32	
MEAN	SW	-0.01	0.00	0.27	0.41	-0.03	
	LW+SW	-3.18	-0.42	2.00	0.41	0.28	-0.91
		Plank	Lapse rate	Water vapor	Surface Albedo	Cloud	

$$\begin{vmatrix} \lambda_p = -4\varepsilon\sigma T^3 \\ \varepsilon = \frac{N_{LW}}{\sigma T^4} \end{matrix} \rightarrow \lambda_p = -3. \ 14 \ Wm^{-2}K^{-1}$$

- Forte rétroaction de l'albédo de surface.
- Rétroaction positive des nuages due à la composante LW.
- Forte différences "Forward" et "Reverse" (effet de la décorrélation des champs)
- Valeurs biaisées par les ajustements stratosphérique et troposphérique.

Forçage et paramètre de rétroaction effectifs (Grégory et al., 2004): $\Delta N = f(\Delta T)$

-1.10 \neq -0.91W m⁻² K⁻¹ \rightarrow Effet des ajustements

Suivant Colman and Mc Avaney (2011), PRP en transitoire + régréssion linéaire pour obtenir F_i et λ_i .

- Période: 15 ans (début) + 10 ans (fin)

Forçage et paramètre de rétroaction effectifs (Grégory et al., 2004): $\Delta N = f(\Delta T)$

-1.10 \neq -0.91W m⁻² K⁻¹ \rightarrow Effet des ajustements

Suivant Colman and Mc Avaney (2011), PRP en transitoire + régréssion linéaire pour obtenir F_i et $\lambda_{i.}$ - Période: 15 ans (début) + 10 ans (fin)

Forçage et paramètre de rétroaction effectifs (Grégory et al., 2004): $\Delta N = f(\Delta T)$

		CO2+T _{STRATO}	O ₃	T _{TROPO}	W	А	С	TOTAL	Effectif
Trop	F (W m ⁻²)	8.34	-0.43	-0.36	-0.63	-0.18	0.63	7.4	7.4
-	$\lambda (W m^{-2} K^{-1})$	0.00	0.00	-3.87	2.14	0.46	0.17	-1.10	-1.10
+	1								
		CO2+T _{STRATO}	O_3	T _{TROPO}	W	A	С	TOTAL	Effectif
IOA	F (W m ⁻²)	6.86	0.44	-0.41	-0.04	-0.18	0.64	7.3	7.3
	$\lambda (W m^{-2} K^{-1})$	0.17	0.05	-3.6	1.69	0.45	0.16	-1.08	-1.06
									C

- Contribution au forçage dans le SW: ajustement troposphérique
- Rétroaction positive dans le LW
 Rétroaction négative dans le SW

$\mathbf{F}(\mathbf{W},\mathbf{m},2)$,,	A	C	TOTAL	Ellechi
1 (W III -)	8.34	-0.43	-0.36	-0.63	-0.18	0.63	7.4	7.4
(W m ⁻² K ⁻¹)	0.00	0.00	-3.87	2.14	0.46	0.17	-1.10	-1.10
	CO2+T _{STRATO}	O_3	T _{TROPO}	W	А	С	TOTAL	Effectif
F (W m ⁻²)	6.86	0.44	-0.41	-0.04	-0.18	0.64	7.3	7.3
(W m ⁻² K ⁻¹)	0.17	0.05	-3.6	1.69	0.45	0.16	-1.08	-1.06
	$(W m^{-2} K^{-1})$ $F (W m^{-2})$ $(W m^{-2} K^{-1})$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(W m ⁻² K ⁻¹)0.000.00CO2+T STRATOO3F (W m ⁻²)6.860.44(W m ⁻² K ⁻¹)0.170.05	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Comparaison avec la PRP classique:

		Т	L	W	А	С
Trop	$\lambda_i PRP \ classique \ ({\rm W} \ {\rm m}^{\text{-}2} \ {\rm K}^{\text{-}1})$	-3.60	-0.42	2.00	0.41	0.28
	$\lambda_i \ effectif$ (W m ⁻² K ⁻¹)	-3.87	-0.69	2.14	0.46	0.17
		Т	L	W	А	С
TOA	$\lambda_i PRP \ classique \ ({\rm W} \ {\rm m}^{\text{-}2} \ {\rm K}^{\text{-}1})$	-3.9	-0.47	1.67	0.40	0.28
	$\lambda_i \ effect if \ ({\rm W} \ m^{\cdot 2} \ {\rm K}^{\cdot 1})$	-3.43	-0.10	1.69	0.45	0.16

Conclusion et perspectives

- Quantification des rétroactions radiatives dans CNRM.CM5.1 au sommet du modèle et à la tropopause → peut servir de comparaison pour les études multimodèles.

- Tests de sensibilité à la fréquence à la laquelle on change les champ et à la période de simulation. 3 ans et 6H suffisent à avoir une estimation.

- Pour un modèle vérifiant la linéarité entre N et T, on peut calculer la contribution de chaque composant au forçage et au paramètre de rétroaction effectif par la méthode de Colman and McAvaney (2011).

→ Rétroaction négative des nuages dans le SW non mis en évidence par la PRP classique.

- \rightarrow A priori rétroaction de l'albédo et de la vapeur d'eau plus importantes.
- → A priori rétroaction de la température (donc du gradient de température) plus importantes.

- Méthode des kernels (non montré). Bon résultats sauf pour la vapeur d'eau au TOA (biais de l'ordre de 0.5 W m-2).

- Remplacer les champ de la troposphère et de la stratosphère séparément afin d'étudier l'effet de l'ajustement stratosphérique et expliquer les différences obtenues au TOA et à la tropopause.

Interactions entre rétroactions, effet de la décorrélation des champs

$$\Delta N = F + \sum_{i} \lambda_{i} \Delta T + \sum_{i,i} \hat{N}_{ij} + O(T^{3}) \quad \Longrightarrow \sum_{i} \lambda_{i} = \frac{\Delta N - F}{\Delta T} + \sum_{i,i} \frac{N_{ij}}{\Delta T}$$

Terme du 2e ordre (Stein and Alpert, 1997):

$$\begin{split} &\widehat{N}_{12} = N_{12} - (N_1 + N_2) + N_0 \\ &\widehat{N}_{13} = N_{13} - (N_1 + N_3) + N_0 \\ &\widehat{N}_{23} = N_{23} - (N_2 + N_3) + N_0 \end{split} \quad \text{Exemple: } \mathsf{N}_{\mathsf{WC}} = \mathsf{N}(\mathsf{T}, \mathsf{q}', \mathsf{a}, \mathsf{C}') - \mathsf{(N}(\mathsf{T}, \mathsf{q}', \mathsf{a}, \mathsf{C}) + \mathsf{N}(\mathsf{T}, \mathsf{q}, \mathsf{a}', \mathsf{C})) \end{split}$$

PRP contrôle 1850-1860 (1) vs contrôle 1990-2000 (2):

	Т	W	А	С	T+W+A+C
$1 \rightarrow 2$	-1.31	1.26	0.00	0.69	0.63
$2 \rightarrow 1$	-0.83	0.96	-0.03	0.73	0.84

	WC	CT	WT	CA	WA	WC	Total 1º ordre + 2º ordre	ΔΝ
$1 \rightarrow 2$	-2.74	1.38	0.71	0.03	0.00	-0.16	-0.12	-0.07
$2 \rightarrow 1$	-2.74	1.38	0.71	0.03	0.00	-0.16	0.11	0.07

Variation du flux net TOA (W m⁻²)

Interactions entre rétroactions, effet décorrélation des champs

Calcul des termes du 2e ordre.

$$\Delta N = F + \sum_{i} \frac{\partial N}{\partial x_{i}} \frac{\partial x_{i}}{\partial T} \Delta T + \left(\sum_{i,i} \frac{\partial^{2} N}{\partial x_{i} \partial x_{j}} \frac{\partial x_{i} \partial x_{j}}{\partial T^{2}}\right) \Delta T^{2} + O(T^{3})$$

$$\Delta N = F - \sum_{i} \lambda_{i} \Delta T \qquad -\sum_{i,i} \lambda_{ij} \Delta T^{2} \qquad + O(T^{3})$$

Stein and Alpert (1993):

Effet physique + effet décorrélation des champs (biais méthodologique)

$$f(x_1,...,x_n) = \hat{f}_0 + \sum_i \hat{f}_i(x_i) + \sum_{i,i,i\neq j} \hat{f}_{i,j}(x_i,x_j) + \dots$$

$$\begin{aligned} \hat{f}_{0} &= f_{0} \\ \hat{f}_{1} &= f_{1} - f_{0} \\ \hat{f}_{2} &= f_{2} - f_{0} \\ \hat{f}_{3} &= f_{3} - f_{0} \\ 0 \\ &= \Delta N_{i} = -\lambda_{i} \Delta T \end{aligned} \qquad \begin{aligned} \hat{f}_{12} &= f_{12} - (f_{1} + f_{2}) + f_{0} \\ \hat{f}_{13} &= f_{13} - (f_{1} + f_{3}) + f_{0} \\ \hat{f}_{23} &= f_{23} - (f_{2} + f_{3}) + f_{0} \\ &= \Delta N_{ij} = -\lambda_{ij} \Delta T \end{aligned}$$

		F+T _{STRATO}	O ₃	T _{TROPO}	W	А	С	TOTAL	Effectif
Trop	F (W m ⁻²)	8.34	-0.43	-0.36	-0.63	-0.18	0.63	7.4	7.4
	$\lambda (W m^{-2} K^{-1})$	0.00	0.00	-3.87	2.14	0.46	0.17	-1.10	-1.10
		$F+T_{STRATO}$	O_3	T_{TROPO}	W	А	С	TOTAL	Effectif
TOA	F (W m ⁻²)	6.86	0.44	-0.41	-0.04	-0.18	0.64	7.3	7.3
	$\lambda (W m^{-2} K^{-1})$	0.17	0.05	-3.6	1.69	0.45	0.16	-1.08	-1.06

Nuages.

		F+T _{STRATO}	O_3	T _{TROPO}	W	A	C	TOTAL	Effectif
Trop	F (W m ⁻²)	8.34	-0.43	-0.36	-0.63	-0.18	0.63	7.4	7.4
	$\lambda (W m^{-2} K^{-1})$	0.00	0.00	-3.87	2.14	0.46	0.17	-1.10	-1.10
						\backslash			
		F+T _{STRATO}	O_3	T _{TROPO}	W	Ă	С	TOTAL	Effectif
TOA	F (W m ⁻²)	6.86	0.44	-0.41	-0.04	-0.18	0.64	7.3	7.3
	$\lambda (W m^{-2} K^{-1})$	0.17	0.05	-3.6	1.69	0.45	0.16	-1.08	-1.06

Albédo de surface.

		F+T _{STRATO}	O_3	T _{TROPO}	/ W \	A	C	TOTAL	Effectif
Trop	F (W m ⁻²)	8.34	-0.43	-0.36	-0.63	-0.18	0.63	7.4	7.4
	$\lambda (W m^{-2} K^{-1})$	0.00	0.00	-3.87	2.14	0.46	0.17	-1.10	-1.10
		F+T _{STRATO}	O_3	T _{TROPO}	W	A	С	TOTAL	Effectif
TOA	F (W m ⁻²)	6.86	0.44	-0.41	-0.04	-0.18	0.64	7.3	7.3
	$\lambda (W m^{-2} K^{-1})$	0.17	0.05	-3.6	\1.69 /	0.45	0.16	-1.08	-1.06

Vapeur d'eau

		$/F+T_{STRATO}$	O_3	T_{TROPO}	W	A	С	TOTAL	Effectif
Trop	F (W m ⁻²)	8.34	-0.43 /	-0.36	-0.63	-0.18	0.63	7.4	7.4
	$\lambda (W m^{-2} K^{-1})$	0.00	0.00	-3.87	2.14	0.46	0.17	-1.10	-1.10
		F+T _{STRATO}	O ₃	T _{TROPO}	W	А	С	TOTAL	Effectif
TOA	F (W m ⁻²)	\ 6.86 /	0.44	-0.41	/ -0.04	-0.18	0.64	7.3	7.3
	$\lambda (W m^{-2} K^{-1})$	0.17	0.05	-3.6	1.69	0.45	0.16	-1.08	-1.06

-10

-15

-20

-25

0

2

 $\Delta T(K)$

4

6

6

 $\Delta N_{\rm T} \, (W \; m^{-2})$

-10

-15

-20

-25

0

2

 $\Delta T(K)$

4

CO2 et Température