Intercomparaison de modèles de la variabilité de la MOC et du contenu d'eau douce dans l'Atlantique Nord

Julie Deshayes (LPO CNRS WHOI) Ruth Curry (WHOI)

+ collaborateurs de : IPSL (J. Mignot, D. Swingedouw), GFDL (R. Msadek), CNRM (A. Voldoire, D. Salas-Melia, C. Cassou) et NCAR

Flux d'eau

douce en

surface :

Evaporation,

et apports

fluviaux (R)

Swingedouw et al. (2007) : les deux mécanismes A et B influencent la MOC qui est moins intense quand le contenu d'eau douce est plus grand (et inversement).

Augmentation du contenu d'eau douce de 1965 à 1995 dans la gyre subpolaire

Curry et Mauritzen (2005), Peterson et al (2006)

Intensification de la circulation dans l'Atlantique Nord de 1970 à 1995

Indice de gyre barocline déterminé par la différence d'Energie Potentielle Disponible entre la Mer du Labrador et les Bermudes (lissage par moyenne glissante à 3 ans), superposé sur l'indice NAO. Curry and McCartney (2001)

Frankignoul, Deshayes and Curry (2009) : ces deux tendances observées répondent à la variabilité atmosphérique (NAO).

Hypothèse de travail

Existe-t'il des **échelles de temps privilégiées** où l'eau douce joue un rôle actif dans les fluctuations de la circulation dans l'Atlantique Nord, et d'autres où elle est passive ? ie rôle passif à très haute fréquence, où le forçage atmosphérique dominerait, vs rôle actif à plus basse fréquence, bien reproduit par les modèles couplés... Dans les deux cas, quelles sont les **sources de variabilité** de l'eau douce ?

Méthode : inter-comparaison de modèles couplés CMIP5 (simulations de contrôle en conditions pré-industrielles)

outil d'analyse FCVAR (Matlab)

diagnostique 3D transports de masse et d'eau douce à travers des sections physiques contenu d'eau douce dans les régions délimitées par ces sections

GFDL-CM3

MOM + AM 1° résolution horizontale 30 niveaux surface libre explicite (z*) grille B dans l'océan 600 ans analysés

CCSM4-CESM1

POP + CCM3 + CICE 1° résolution horizontale 60 niveaux surface libre implicite grille B dans l'océan 1300 ans analysés

CNRM-CM5

NEMO + ARPEGE + GELATO 1° résolution horizontale 42 niveaux, partial steps surface libre implicite grille C dans l'océan 1000 ans analysés

IPSL-CM5

NEMO + LMDz + LIM 2° résolution horizontale 31 niveaux, partial steps surface libre implicite grille C dans l'océan 1000 ans analysés

Sections analysées dans l'Atlantique Nord

Transport d'eau douce [moyenne, déviation standard] (mSv) positif vers le nord, S0=34.8 Fluctuations du contenu en eau douce

Budget d'eau douce dans la gyre subpolaire

Budget d'eau douce dans la gyre subpolaire

Budget d'eau douce dans la gyre subpolaire

Corrélations entre contenu d'eau douce et indices de circulation Séries temporelles filtrées passe-haut (T<10 ans)

grisé : non significatif

les fluctuations du contenu en eau douce précèdent aux lags négatifs.

Corrélations entre contenu d'eau douce et indices de circulation Séries temporelles filtrées passe-bande (10<T<50 ans)

grisé : non significatif

les fluctuations du contenu en eau douce précèdent aux lags négatifs.

Corrélations entre contenu d'eau douce et indices de circulation Séries temporelles filtrées passe-bas (T>50 ans)

grisé : non significatif

les fluctuations du contenu en eau douce précèdent aux lags négatifs.

Conclusions

Quelles sont les sources de variabilité de l'eau douce ?

variabilité des flux entrants, en particulier à travers la frontière sud (sauf pour le CNRM) Existe-t'il des **échelles de temps privilégiées** où l'eau douce joue un rôle actif dans les fluctuations de la circulation dans l'Atlantique Nord, et d'autres où elle est passive ?

non, mais les liens entre eau douce et circulation dépendent fortement du modèle...

GFDL

oscillation décennale l'intensification de la gyre subpolaire induit la diminution du contenu d'eau douce, 3 à 5 ans plus tard l'intensification de la MOC induit la diminution du contenu d'eau douce

l'augmentation du contenu d'eau douce induit la diminution de la MOC, 1 à 5 ans plus tard

CCSM

pas de pic spectral l'intensification de la MOC induit la diminution du contenu d'eau douce

CNRM

pas de pic spectral corrélations faibles entre contenu d'eau douce et indices de circulation

IPSL

oscillation décennale l'intensification de la gyre subpolaire induit la diminution du contenu d'eau douce, 0 à 7 ans plus tard l'intensification de la MOC induit la diminution du contenu d'eau douce l'augmentation du contenu d'eau douce induit la diminution de la MOC, 1 à 5 ans plus tard

le paradigme avec les observations persiste ...

