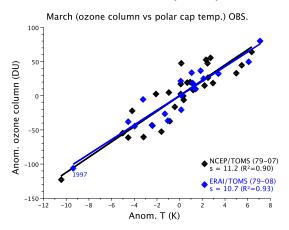
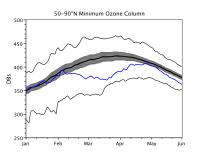
Variabilité de la stratosphère polaire arctique en fin d'hiver/début du printemps : rôle de l'ozone.

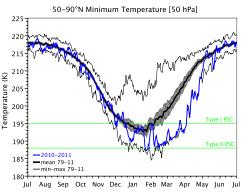

David Saint-Martin et al.

Météo-France [CNRM-GAME/GMGEC/CAIAC]

Introduction


- La stratosphère polaire arctique hivernale (et printannière) présente :
 - une très forte variabilité interannuelle.
 - un comportement extrêmement complexe, qui mêle des effets dynamiques, radiatifs et chimiques.
- Sujet de l'étude : rôle de l'ozone.
- Axes d'étude
 - Utilisation d'un modèle couplé chimie-climat : CNRM-CCM (cf Michou et al., 2011).
 - Cas d'étude de l'hiver 2010-2011.

Corrélation ozone-température (mars)


▶ Lien fort entre la T et l'O₃.

L'hiver 2010-2011 : un cas d'étude idéal.

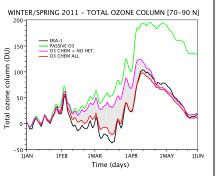
- ▶ Une fin d'hiver 2010-2011 remarquable dans la stratosphère polaire arctique :
 - en termes d'ozone (cf Manney et al., Nat., 2011).

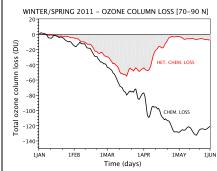
L'hiver 2010-2011 : un cas d'étude idéal.

- ▶ Une fin d'hiver 2010-2011 remarquable dans la stratosphère polaire arctique :
 - en termes d'ozone (cf Manney et al., Nat., 2011).
 - en termes de température (cf Hurwitz et al., 2011).

Plan

- Quid de $O_3 = \mathcal{F}(T)$?
- Quid de $T = \mathcal{G}(O_3)$?
- Rétroaction?


Ozone = $\mathcal{F}(\mathsf{Temp\'{e}rature})$


- ▶ Effet bien documenté, principalement dans l'Hémisphère Sud.
- \triangleright 2 mécanismes concurrents : Transport et Chimie, en interaction \mathcal{I} .

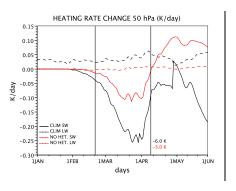
$$\frac{\partial}{\partial t}(O_3) = \text{Tr} + \text{Ch} + \mathcal{I}(\text{Tr}, \text{Ch})$$

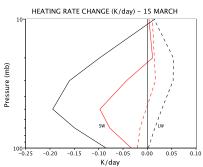
- $ightharpoonup \operatorname{Tr} = f(Q_{dyn}(T))$: sensible à T à travers le filtrage des ondes planétaires.
- ightharpoonup Ch = Gaz.(T) + Het.(T) : rôle de T via la formation ou non de PSC (phénomène à seuil, non-linéaire).
- Quantifier le rôle respectif de chacun de ces termes.
- 3 simulations guidées (dyn. & temp.) du 1er jan 2011 au 31 mai 2011.
 - 1 Pas de chimie : ozone comme traceur passif.
 - 2 Chimie gazeuse seulement.
 - 3 Chimie gazeuse et hétérogène.

Ozone = $\mathcal{F}(\mathsf{Temp\'{e}rature})$: résultats hiver-printemps 2011

- ▶ Bonne représentation des réactions chimiques : respect de la chronologie (résultats similaires à Balis et al., 2011 et Sinnhuber et al, 2011).
- ▶ Rôle prépondérant (-50 DU) de la chimie hétérogène pour l'hiver 2011.

Température = $\mathcal{G}(Ozone)$

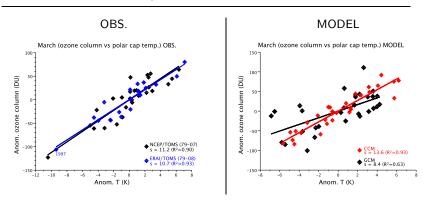

$$rac{\partial T}{\partial t} = Q_{dyn}(t) + Q_{rad}(t)$$
 $Q_{rad} = J_{SW}(O_3,ullet) + Q_{LW}(T,ullet,O_3)$


- Quantifier $\partial Q_{rad}/\partial O_3$ le long de la trajectoire hiver/printemps?
- Utilisation des 3 simulations guidées précédentes.
 - 1 Ozone passif : $Q_{rad}(t) = Q_{rad}(T^*, O_3^{(c)})$ 2 Ozone (chimie gazeuse) : $Q_{rad}(t) = Q_{rad}(T^*, O_3^{(g)})$

 - 3 Ozone (chimie gazeuse + hét.) : $Q_{rad}(t) = Q_{rad}(T^*)$
- L'intégrale de $\delta Q_{rad}(t)$ le long de la trajectoire donne une idée de la perturbation de température engendrée par la diminution d'ozone :

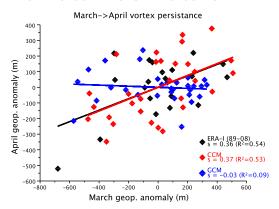
$$\int \delta Q_{rad}(t) \equiv \delta T_{o3}$$

Taux de chauffage radiatifs : évolution temporelle



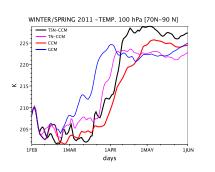
- Effet majoritairement en ondes courtes (et maximal fin mars).
- Effet concentré autour de 50 hPa (cohérent avec Shine, 1986).
- Effet cumulé $\delta T_{o3} \equiv 6 \text{ K}$: suffisamment important pour une rétroaction?

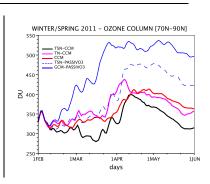
$$O_3 \setminus \Rightarrow T \setminus \Rightarrow O_3 \setminus$$


Rétroaction?: lien ozone-température (mars).

- 2 simulations transitoires (GCM forcé par SST obs., 1971-2000).
 - 1 Contrôle (chimie calculée mais passive) : GCM.
 - 2 Radiativement couplée avec la chimie : CCM.

- ▶ Lien plus significatif ozone/température en chimiquement-couplé.
- \triangleright Si perturb. de T, alors ajustement de O_3 dans les deux cas, mais pas d'impact sur T dans le cas de référence.


Rétroaction? lien vortex mars - vortex avril.



Pas de persistance hiver/printemps des anomalies de vortex dans la simulation de référence (GCM): prise en compte réaliste par la simulation avec chimie (CCM).

Rétroaction?: reproduction hiver-printemps 2011

- Simulations du 02/02/2011 au 31/05/2011, avec initialisation de l'ozone issu de la simulation guidée (TSN-CCM).
 - ▷ Contrôle (ozone passif) : GCM.
 - ▶ Radiativement couplée avec la chimie : CCM.
 - ▶ Chimie-couplée + guidée dans la troposphère : TN-CCM.

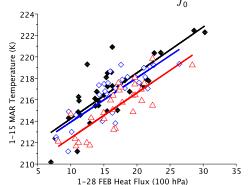
Résultats prometteurs.

Conclusion et perspectives

- Étendre le protocole à d'autres années.
- Étudier le rôle (primordial) des ondes planétaires et des ondes de gravité.
- Rôle du forçage solaire? Rétroaction de la vapeur d'eau?
- Impact sur le climat de surface?
- Quid des tendances?

Bibliographie

- Balis et al. (2011) Observed and modelled record ozone decline over the Arctic during winter/spring 2011, GRL, 38, L23801.
- Hurwitz et al. (2011) The Arctic vortex in march 2011: a dynamical perspective, ACP, 11, 11447-11453.
- Manney et al. (2011) Unprecedented Arctic ozone loss in 2011, Nature, 478, 469–475.
- Michou et al. (2011) A new version of the CNRM Chemistry-Climate Model, CNRM-CCM: description and improvements from the CCMVal2 simulations, GMD, 4, 873-900.
- **Shine** et al. (1996) On the modelled thermal response of the Antarctic stratosphere to a depletion of ozone, *GRL*, 13, 1331-1334.
- Sinnhuber et al. (2011) Arctic winter 2010/2011 at the brink of an ozone hole, GRL, 38, L24814.


Heat flux

$$\frac{\partial T}{\partial t} = Q_{dyn} + Q_{rad}$$

TEM formulation (cf Newman et al., 2001):

$$Q_{dyn} = -\overline{w^*}\Gamma = C\overline{v'T'} \ \ {
m et} \ \ Q_{rad} = -rac{1}{ au}(\overline{T}-\overline{T}_{re})$$

$$\overline{T}(t) = \overline{T}_{re} + e^{-t/\tau} (\overline{T}(0) - \overline{T}_{re}) + C \int_0^t e^{-(t+\xi)/\tau} \overline{v'T'}(\xi) d\xi$$

