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This study:
How are WWBs & warm pool advection related?

e Why do only some WWBs displace the warm pool eastward?
e Which processes are important?
e What are the feedbacks between WWBs and ENSO?

Strategy:

e (ORCAO025 model — DRAKKAR run
— Based on the NEMO OGCM

— Forcing: shortwave fluxes & surface meteorological variables using
the DFS3 bulk formula (based on ERA-40); radiation from ISCCP.

— output resolution: 5-day, 0.25°x0.25°,
vertical resolution 6-m (surface) to 250-m (depth)
— output fields (present study): temperature, salinity, zonal currents

e Define WWBSs:

i 2
_ At each time-step, locate points for which: { Wind stress>0.02N/m

wind stress anomaly > 0.06 N/m?

— WWSABs defined as patches of having zonal extent > 10° & duration 2 5 days
— Using 1980-2007 (28 years, ~120 WWABs)
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Momentum balance (integrated) for all WWBs

Below the WWB
t:tf

T
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Au ~ I = ua— = l@ dt

surface current wind forcing = pr.essure
acceleration gradient force

R=0.0019 ' ' R=0.082

Below the WWB, wind stress
dominates the zonal current
acceleration

H =100m
to = start of WWB
T ¢ = end of WWB



Momentum balance (integrated) for all WWBs

At the warm pool edge

t:tf
T
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Au ~ I = ua— = l@ dt
surface current wind forcing = pr.essure
acceleration gradient force
R=0.4’9 R=0.35
(m/s)
0 i 2
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At the edge of the warm pool, advection
and pressure gradient are also important

H =100m
to = start of WWB

1 =end of WWB



Summary:

1. Westerly wind bursts drive eastward zonal surface currents:
0 Wind stress dominates current acceleration locally.

O At the edge of the warm pool, momentum advection and
zonal pressure gradient are also critical.

2. Warm pool displacement is more sensitive to surface currents
than to local temperature gradient.

3.  WWB-related warm pool displacement leads El Nifio-related
warming by 3—-9 months.

Next steps:

e Re-run model with higher time resolution and full momentum budget:
— Diagnose processes and quantify impacts more carefully.

e Explore the impacts of temperature and salinity variations:
— Pressure gradient forcing.
— Effect of barrier layers.

e Explore the feedbacks between ENSO and WWBs:

— How large-scale conditions related to ENSO impact WWB properties (occurrence,
intensity, location) and upper ocean response, and how this can feed back onto
ENSO via the warm pool.



