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El Niño –

Southern 

Oscillation

damped, and excited by 

high-frequency 

atmospheric activity

quasi-periodic 

self-sustaining 

oscillation

vs. 

"westerly wind bursts" (WWBs) 

precede El Niño events

~8 days duration{
~20o longitude span

~7 m/s



Example: strong 1997-98 El Niño
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This study: 

How are WWBs & warm pool advection related?

• ORCA025 model – DRAKKAR run
– Based on the NEMO OGCM

– Forcing: shortwave fluxes & surface meteorological variables using 
the DFS3 bulk formula (based on ERA-40); radiation from ISCCP. 

– output resolution: 5-day, 0.25ox0.25o, 

vertical resolution 6-m (surface) to 250-m (depth) 

– output fields (present study): temperature, salinity, zonal currents

• Define WWBs:
– At each time-step, locate points for which:

– WWBs defined as patches of having zonal extent > 10o & duration ≥ 5 days 

– Using 1980-2007 (28 years, ~120 WWBs)

wind stress anomaly > 0.06 N/m2
{

wind stress > 0.02 N/m2

Strategy:

• Why do only some WWBs displace the warm pool eastward? 

• Which processes are important?

• What are the feedbacks between WWBs and ENSO?
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Most WWBs only 

shift the warm 

pool a few 

degrees eastward
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Series of WWBs and warm pool displacement: 

relationship to ENSO

Nino-3.4 warming 

follows warm pool 

displacement by

3–9  months
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What drives WWB-related warm pool displacement?

Zonal SST advection:

0-0.8

140oE 180oE 220oE 260oE

1 Feb 1997

1 Mar 1997

1 Apr 1997

-0.8

u (m/s)

2520 30

SST (oC)

140oE 180oE 220oE 260oE



What drives WWB-related warm pool displacement?
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What processes drive surface current anomalies?

Simplified momentum balance:

surface current 

acceleration
wind forcing

pressure 

gradient force
advection
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* Ignoring vertical processes (advection, turbulent flux) and Coriolis

Below WWB: wind stress dominates

At warm pool edge: zonal advection

Along Kelvin wave path: pressure gradient

= mixed-layer depth
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Momentum balance (integrated) for all WWBs 

At the warm pool edge
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Summary:
1. Westerly wind bursts drive eastward zonal surface currents:

o Wind stress dominates current acceleration locally.

o At the edge of the warm pool, momentum advection and 
zonal pressure gradient are also critical.

2. Warm pool displacement is more sensitive to surface currents
than to local temperature gradient.

3. WWB-related warm pool displacement leads El Niño-related 
warming by 3–9 months.

Next steps:
• Re-run model with higher time resolution and full momentum budget:

– Diagnose processes and quantify impacts more carefully.

• Explore the impacts of temperature and salinity variations:

– Pressure gradient forcing.

– Effect of barrier layers.

• Explore the feedbacks between ENSO and WWBs:

– How large-scale conditions related to ENSO impact WWB properties (occurrence, 

intensity, location) and upper ocean response, and how this can feed back onto 

ENSO via the warm pool.


