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1. Introduction

Application of deconvolution to weather radar images has remained a challenging problem. Deconvolution algorithms tend 
to amplify measurement noise, which makes straightforward inversion of the convolution process impractical. A number of  
algorithms have been published to improve radar image quality in the radial direction from the radar, but success in tangential 
deconvolution has been limited. 

With  traditional  images  such  as  photographs,  deconvolution  has  been  studied  extensively.  However,  most  image 
deconvolution algorithms cannot be applied on radar images in a straightforward manner as the algorithms are typically 
formulated by assuming additive noise, which is not applicable for weather radars in which the single-pulse statistical noise is 
multiplicative (as we shall explain below). Still, we can identify a few general principles that have led to success in various 
types of deconvolution algorithms. Firstly, it has been understood that the statistical model of the image noise should be  
accurate in order to properly understand the effect of noise on the resulting image. Secondly, the ill-posed nature of the  
problem should be dealt with by applying a regularization that weights the result towards more realistic images.

Although the differences between radar images and photograph-like images necessitate a somewhat different approach for 
radar image processing, the above mentioned principles do not present any insurmountable obstacles for radar deconvolution. 
For radar image noise modeling, a particular model of  image noise, exponentially distributed multiplicative noise for single-
pulse  powers,  has  rather  strong theoretical  justifications supporting  it;  indeed  this  is  more  than  can  be  said  for  many 
photograph noise models. The regularization can be approached in several  ways, and there is no such strong theoretical 
support for any particular model, but on the other hand, the difference from photographs is perhaps smaller than in the case of 
noise. Thus, these approaches seem justifiable in weather radar deconvolution as well.

A general and statistically justified method to combine the noise model and the regularization is offered by Bayesian  
probabilistic treatment. We have developed a deconvolution algorithm for weather radar images that is based on rigorous 
Bayesian treatment of the properties of the image, and the process of deterioration through convolution and noise. Typically 
for  Bayesian formulation, the  a posteriori probability is  written in terms of conditional  and  a priori probabilities.  The 
conditional  probability  is  formulated  by  requiring  that  the  probability  distribution  of  the  multiplicative  noise  is  the 
exponential distribution; this property is true for the single-pulse powers received by the radar. The single-pulse powers are  
required by the algorithm as input, necessitating the use of . The a priori probability is based on the properties of the spatial 
variability  of  rainfall,  and  restricts  the  gradient  of  the  logarithm of  pulse  power,  resulting  in  an  effective  "requested 
sharpness" parameter for the algorithm. From the Bayesian probability, a cost function is derived; this can be minimized 
using a standard multivariate optimization algorithm. We tested the result with radar RHI scans and observed a significant  
sharpening of the images.

2. Formulation of the problem

Consider an ”ideal” radar reflectivity field, which we shall call x. This is the image that would be seen by a radar that has a 
perfect pencil beam and a negligibly short pulse length.  Mainly due to the statistical variation of the radar return signal and 
the nonzero width of the beam from the radar antenna, a real radar will see a degraded version of this image, called y here. In 
this section, we shall describe the process that forms the image y.

When a weather radar scans, the underlying “true” image is spatially averaged (blurred) by the square of the antenna  
pattern. This results in a convolution in the polar coordinates. Mathematically, the expected value of the radar pulse power y 
is 

 y (ϕ)=∫ x (ϕ−ϕ ' ) g (ϕ ' ) dϕ' (1)

where x is the true image, g=f2 is the square of the antenna pattern f, and ϕ is the polar angle. The image is also blurred by the 
radar pulse shape in the radial direction, but we neglect this effect in this study. The convolution can be discretized and  
written in linear algebraic form as

y=Gx  (2)
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where G is a Toeplitz matrix (or more generally, a linear operator) which produces a convolution by f on a vector multiplied 
by it.

The actual received power is randomly determined from an exponential distribution with the given expected value. The 
latter  effect  is explained as follows: since the number of scatterers  in a meteorological  target  is large,  the central  limit 
theorem applies such that the received real and imaginary phasor voltages I and Q are normally distributed. The power from 
the pulse is I2+Q2, and the sum of the squares of two normally distributed random variables is well known to be exponentially 
distributed.

The actual realized value y of the received power from a single pulse is a random variable with probability density function 
(PDF)

p ( y)=
1

y ( ϕ)
exp (− y

y (ϕ ) )  . (3)

As this PDF only depends on the ratio of the realized value and the expected value, the statistical variation of the signal can  
be seen as multiplicative noise, and thus the one-pulse image formation process can be written as

y=Gx⋅n  (4)

where n is a sampled an exponential distribution with a rate parameter of 1.

3. Algorithm

We attempt  to  solve the  inverse  problem of restoring the  ideal  image  x from the degraded  image  y by writing the 
probability of x, given y and some assumptions about the nature of x, using Bayes' theorem as.

p (x∣y)=
p (y∣x) p (x)

p (y )
 . (5)

A solution that maximizes this conditional probability is called the maximum a posteriori (MAP) estimate.
The conditional probability p(y|x) can be formulated in terms of the noise. From (4), we see that

Gx
y

=n  . (6)

Since the PDF of n is known, we can write (for N discrete samples).

p (y∣x)∝∏ exp(− y i
(Gx )i )  . (7)

The problem with this definition is that the modal and expected values of the exponential distribution are very different (0  
and 1, respectively, in this case), which can cause problems when using the MAP estimator and aiming to find the expected  
value. Also, the PDF is discontinuous at 0, which is problematic particularly for unbounded optimization methods. We can 
work around the problem by using the conditional distribution problem by using the conditional probability of the logarithms 
instead. It can be shown (we omit the proof here) that

p (ln y∣ln x)∝∏ exp( ln(
y i

(Gx )i )−
y i

(Gx )i )  (8)

and this expression is adopted as our conditional probability.
For the prior  p(x), we need to assume something about the nature of  x. It is a common assumption that meteorological 

targets exhibit scale-free variability statistics. This means that the logarithm of the rain rate can be modeled as a Gaussian 
random walk with a constant variability. Since the logarithm of the received radar power is approximately linearly related to  
the logarithm of the rain rate, this assumption should apply to the received power as well. With this reasoning, we construct  
the prior in terms of the spatial rate of change in ln(x), with

p ( ln x )∝∏ exp (−Dr ln (x )i
2

2σr
2

−
Dϕ ln (x )i

2

2σϕ
2 )  (9)

where  Dr and  Dϕ are  ''differencing''  matrices  which give  the  difference  of  adjacent  values  in  the  radial  and  tangential 
directions,  respectively.  This  prior  also allows us to  conveniently operate  with ln(x),  as  with the conditional  part.  The 
parameters σr and σϕ should be as close to the real variability of the measured target as possible. In practice, small values of σr 

and σϕ lead to softer images, while large values produce sharper results but can also introduce artifacts. Thus, these can be 
seen as a ''requested sharpness'' parameters.

Our optimal estimate is the x that maximizes the probability p(x|y). Since we can equally validly maximize the probability 
of ln(p(x|y)), the deconvolution becomes a cost function minimization problem where the cost function E is
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E=∑ ln(
yi

(Gx )i )−
y i

(Gx )i
+

Dr ln (x )i
2

2σr
2

+
Dϕln ( x )i

2

2σϕ
2

 , (10)

which can be minimized with respect to x with standard optimization methods.

4. Experiments

For testing the deconvolution, we used test data from a case observed using the University of Helsinki Kumpula radar on  
March 19, 2011. From the original RHI scan, we selected a smaller part of 30 range gates from each of 1500 pulses, at  
roughly 69-75 km distance and an elevation angle of -0.4° - 8.7°. The range was convenient for the beamwidth of 1.05° to 
introduce a sufficient level of blurring to the meteorological features. Additionally, there was a point target (probably an 
airplane) in this part of the scan, which presented a good test for deconvolution. 

We applied the MAP method using various parameters for σr and σϕ . Lacking an accurate measured antenna pattern, it was 
assumed to be Gaussian, and various standard deviations of f were tried. The best parameters for this case were found with 
some experimentation to be σr ≈ 3.1 and σϕ ≈ 0.36, using a standard deviation of 1.05° for f.  

The results of applying the MAP method are shown in Figs. 1-3. The results of using 64-sample integration to produce a 
“standard” radar image are also shown. The examples show that the deconvolution method seems to add a significant visual  
improvement to the quality of the radar image. The meteorological targets on the center right and the bottom of the images 
are denoised and sharpened at the edges; the widening of objects introduced by the convolution is also removed from the 
center right target. The object in the center of the image that was assumed to be a point target has collapsed into a much more 
compact and intense target. It is encouraging to note that the method works even though the signal from the point target  
(which constitutes only a small part of the whole image) does not follow the exponential multiplicative noise assumption. 
Another interesting finding was that even though the convolution only operates in one dimension, the method works better for 
two-dimensional images than it does for one-dimensional time series. Thus, processing the whole image at once yields better 
results than processing each range independently. An intuitive explanation for this is that in a 2-dimensional image, there are  
more neighboring pixels available from which to recover a noise-corrupted pixel by using the prior.

Fig. 1 Single-pulse powers from a point target and meteorological targets in an RHI scan of the UH radar. The coordinates  
are in kilometers, and Cartesian with the horizontal and vertical axes defined as those at the radar site (thus ignoring the  

curvature of the Earth).
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Fig. 2 The radar image of Fig. 1 after 64-pulse averaging.

Fig. 3 The radar image of Fig. 1 after deconvolution using the MAP method.

5. Conclusion

The MAP deconvolution method seems to be able to provide a resolution enhancement that could be useful in using radar  
to study targets where high resolution is essential. In fact, since it operates on one-pulse power data, it can be said to combine 
deconvolution,  denoising  and  superresolution  methods  in  inverting  the  image  degradation  process.  The  failure  of  the 
conventional deconvolution methods to tackle the problem highlights the need for tailored algorithms for the weather radar  
deconvolution problem.

Finding optimal methods for determining the values of the free parameters of the prior, σr and σϕ, is essential for making 
the MAP method more widely applicable. Ideally, they should be derived from a physical basis, using the horizontal and 
vertical rates of variation as the starting point. It should also be possible to derive the parameters as a function of the distance 
between adjacent samples by deriving statistical relations from large quantities of measured data. At the current state of the 
algorithms, however, the parameters have to be found experimentally.

The  computational  requirements  for  the  MAP method are  also  heavy in the  current  implementation.  Enhancing  the 
1500x30  point  image used  here  takes  roughly 2  minutes  on  a  desktop  computer,  so  it  would be  desirable  to  find  an 
optimization method that is tailored for this problem, rather than using the general L-BFGS method. Other than that, the 
computation can be efficiently parallelized, which allows for code optimization that was not used in this study.
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