ERAD 2012 - THE SEVENTH EUROPEAN CONFERENCE ON RADAR IN VEOROLOGY AND HYDROLOGY

Effective Radar Algorithm Software Development
at the DWD

Nils Rathmann, Michael Mott
Deutscher Wetterdienst, Frankfurt Stral3e 135, 6306@nbach (Main), Germany
nils.rathmann@dwd.de, michael.mott@dwd.de
(Dated: 31 May 2012)

1. Introduction

In 2010, with the radar network update to dual ppédion radars, the Deutscher Wetterdienst (DW&9 launched the
project ‘RadarmaflRnahmen’ to implement and verifjoathms exploiting the new radar features. Thgqmtogoals include
the optimization of the development process. Hemee have started to create a development-, vdiificaand runtime
environment called POLARAROL Arimetric Radar Algorithms) to support the implementation and operaiization of
radar algorithms. Thereby each new developer hsnffim the experience of preceding algorithm demelents. The
purpose of POLARA is to avoid redundant work, stmize the look and context of new algorithms arakencontinuous
data processing as simple and stable as possible.

So far, POLARA has been developed for two yearsiaclddes, among others, algorithms for qualityuasssce (Werner
et al. 2012; this conference), hydrometeor detacéind composite generation (see Chapter 5). Tharitdgn section of
POLARA is furthermore going to be extended by qitative precipitation estimation and mesocyclongdgon algorithms
At this stage, the software can basically be didideto two parts: the development environment, aiming a data
management core, a framework for new algorithmseselper modules and a lot of utility methods; &mel runtime
environment, a defined structure to process algmstcontinuously with live data. How these two st are used and how
they are connected to optimize the work on newrélyos is described in this extended abstract. fiéhe chapter introduces
the concept of POLARA, followed by details abow tiwvo faces — development and runtime environmeasftROLARA in
Chapter 3 and 4. With the composite generation,fiftie chapter presents an exemplary algorithm enpéntation in
POLARA. The final chapter summarizes this abstaact gives a short outlook on future enhancemerBOdfARA.

2. The POLARA Concept

The work on POLARA started in 2010 with four deymes which were confronted with the same issueugeramount of
real-time or verification data in different formatseds to be read, organized and processed aneistiies need to be written
or displayed. Elementary purpose of POLARA is toidwedundancy, make therein developed algorithatk bomparable
and connectable and the developers experiencel dsethe whole group. Hence, we decided to spéme for definitions
of a common software development environment.

With POLARA, the basic programming efforts followdafined and prepared way, from the used languatfeetreal-time
data processing. To answer some of the basic questivery new developer faces, we started with siefiaitions about
the how to developBeginning from bottom to top, we defined Linux dsvelopment OS, C++ with GNU Compiler
Collection as programming language and CMake dsl Isystem. The prerequisites for POLARA are spiitibraries that
every Linux system can have installed from pubdipasitories (e.g., Boost — extended C++ librarieand more special
libraries that are part of a POLARA reference platf (e.g., ROOT — a data analysis framework dewlogt CERN —)
which needs to be installed manually on every system.

Working in the POLARA development environment igukated by some defaults like coding guidelines @+,
documentation standards in doxygen, and a confeemni&i as well as the decision for Eclipse as oammon used
integrated development environment. Furthermordinel@ locations user specific source code and djnee how to
integrate it to the POLARA build system are prodd®/ith these predefinition we provide a basic dewment environment
for any new radar process developer in the DWDaddition, it
creates experience intercommunication and solNes& problem:

When you have a question about your developmeirbament or Revision Control Server [| Runfime

language, there is always someone to ask!

| Environments
To have several developers working together on rectspnized
source tree, we use a software revision contrdesysHence, any
kind of file and source code versioning is don@ iRerforce depot,

. . POLARA
which can be accessed from any server in the DWixark (see Development Development Workflow
Fig. 1). To process the real-time data from the n@er radar Sl
network, a runtime environment can be installeanfra POLARA
installation package to any DWD Linux system. Thentime
environment consists of one process to controfithdnandling and Fig. 1 POLARA development workflow
another process for the scheduling of executabiaplemented

ERAD 2012 - THE SEVENTH EUROPEAN CONFERENCE ON RADAR IN WEOROLOGY AND HYDROLOGY

using the POLARA development environment.

Developers can use the POLARA development enviromroa their own system or any other Linux computethe
DWD, as long as it fulfills the prerequisites mentd above. All developers synchronize with thédPee depot to work on
the same code basis. A runtime environment cangielied on any DWD Linux system which fulfills teame conditions as
a development computer. The runtime synchronizéls thie depot and builds the requested executalgeson the local
machine.

3. The Development Environment

The first step to make the development more effeds to provide a software environment, wherelusgrs can develop
together and benefit from each others work. In ptdeachieve this, all developers use one Perfdegeot to synchronize
their sources. The depot is a folder tree with sewode, scripts, images, configurations, docurtientand the build system
files. The contained CMake build system files can used to generate Makefiles and compile execwabigsing the
POLARA sources.

Beyond that, with POLARA we created a growing systhat handles the basic functionalities of readorganizing and
writing radar data as well as generated data pteduc‘external’ data from other measuring instraieeor models (e.g.,
COSMO-DE). POLARA provides modules with easily a&sible interfaces for logging, configuration filecass and
plotting. Furthermore, a growing amount of utilitynctions for various needs is available.

3.1 The POLARA Core

Core of the POLARA system is the data managemetit widata catalog that keeps metadata and datmked|
redundancy free objects. Metadata is uniquely ifledtby a radar site WMO number, a scan time, ansglevation and a
moment or product name.

To read data to the data catalog, a reader coatridléntifies the file format by file header an@ates a specific reader
(for BUFR, HDF5, GRIB, etc.). The reader takesnietadata from file to create a metadata tree withue leafs. To access
the data, an algorithm developer creates seardtiegugith specific information about the requireataland the data matrix
is read from file and returned, if available. Notteawnhich file type is read by the POLARA readers always organized in
the same data management structure and hencenmldeties or algorithms can handle the data in theesdefined way.

The file writing functionality follows the same paiple. The developer needs to know the data tiatld be written and
picks the specific writer for the desired outputnfiat. There is no need to know more about the watg ¢ organized
internally to write it to different filetypes — &@ng as there is a writer class for it.

To support the use of new filetypes, the writerd asader-controller are easy to extend.

3.2 Jobs

In POLARA, binaries with one or more algorithm, paged to get executed in the runtime environmeatcatled jobs.
These jobs consist of an algorithm session objebtch repeatedly executes and supervises a sequeénalgorithms,
represented by algorithm manager objects. The pbtrafea POLARA job is depicted in Fig. 2. The sessiipdates the data
catalog and sends requests to all registere
algorithm managers. Depending on the curren Job
timestamp, each manager has to check for hi Session process algorithms
algorithm, if the required data to start
processing is available, if there are results tha Update
should be written to disc or if the algorithm Data Catalog Manager ProcessorIAIgorithm
finished work for the current run.

This loop continues until all algorithm 2

manager return, that they are finished or the Yes -
. . Finished?
job gets an external signal to end soon. Wher Manager W Processor I Algorithm
algorithms are organized by a session, they ar
prepared to process live data in a POLARA
runtime environment.

Algorithm Implementation

Algorithm Implementation

3.3 Algorithms Fig. 2 POLARA job concept

The fundamental sense of POLARA is, beside the aackall useful helper classes, the algorithm dagmaknt. To ease
the implementation and use of algorithms in POLARAlefined set of base classes is provided. THasses contain virtual
methods, which have to be implemented and can bsidered as a step by step guide to integrate aatggwithm to the
POLARA software. Each new algorithm has to be e®atith a set of derived classes and implementation thereby
required methods.

The algorithm class is the actual implementatiothef algorithm related calculation, based on asgdtevhich has been
prepared by the algorithm processor. In the POLAdYStem, an algorithm is represented by an algorithenager class,
capable of answering questions about the algoritaie. The manager is tightly linked to the joha=pt, described in 3.4.

ERAD 2012 - THE SEVENTH EUROPEAN CONFERENCE ON RADAR IN TEEOROLOGY AND HYDROLOGY

Following these guidelines has several advantages:
» Easier access to the required data
* Improved readability for other developers
» Connectivity with other algorithms in the system

3.4 Helpers

With POLARA, we tried to offer easy to use intedador common parts of software development, witbcais on radar
data algorithm development. Part of the basic el a logging module to have log files with nictitions in different
severities, microsecond timestamps and in a cemsigtok from any executable compiled in POLARArtRarmore, it can
be used to start and stop timers to measure tlegl sfecertain code snippets.

A configuration module can be used to create cordion files in XML format, access their nodes attlibutes or set
default values to have default configurations aeatt first startup.

Several utility classes offer functionality to getormation about the environment (where are legnfiguration-, image-
or testfiles on disc), do some extended matherpatzulations, string cast operations, file handkng statistic functionality
and many more.

A plotter module takes metadata and data from #ia datalog and generates different types of plxpending on the
data, PPI, RHI, CAPPI or B-Plots can be generaedyell as vertical profiles or scatter plots. plibts are based on read or
generated data and are stored as portable netwnaypkigs.

4. The Runtime Environment

All functionality offered to the developers by tROLARA development environment can be used in ttedf or
verification executables or in the runtime enviremhwith real-time data from the DWD radar netwofke POLARA
runtime environment is a real-time data processtrgcture and can be installed to any Linux systethe DWD that fulfills
the requirements of a POLARA development envirortmPerforce access to update executables from P@Ladurce
code is optional, but is an enormous improvemett®fdeveloper’s workflow.

The runtime environment is organized in a foldeaure with defined import and export directoréesd controlled by
two processes. Runtime jobs process the real-tiata tb create products like hydrometeor detectiorcamposites.
Imported as well as created data is archived aadvirk done is logged. With configurations, thetime environment or
job specific behavior can be adapted to the usszds

A filehandler organizes the files within the runéirdirectories, rejects invalid files, imports valitks to reference time
folders, archives outdated files and removes oattlatchive files. Basically, every file operatioithin the runtime is done
by the filehandler.

A scheduler starts jobs by a certain schedule finel@ intervals to process the currently valid dd&ach job gets a
defined time to run, will be observed during rurdirand receives a signal to end processing sooimith fthe latest
calculations or do whatever is necessary to avaid tbss.

Incoming Data Processing Exported Data

Filehandling

Measuring Instruments

interim

A 4

Radar Data
e DWD Radar Network
* Foreign Countries

Scheduling

Fig. 3 POLARAruntimeenvironmen

ERAD 2012 - THE SEVENTH EUROPEAN CONFERENCE ON RADAR IN TEEOROLOGY AND HYDROLOGY

Scripts are used to control the runtime in any ireguway. For example, a runtime environment caostahe version of
any job that is part of POLARA from the build timné the installation package. To get newer versiomfa certain job to
the runtime environment, a script extends the mmtenvironment functionality with the option to ape the runtime from
depot, which means to get the latest sources, blld®OLARA executables on the runtime environnggstem and copy
the job to the binary folder of the runtime enviment. This allows a developer to create a new jolrty developer system,
synchronize it with the depot and update it to amtime environment.

Everything a developer needs to do to get a newaritihgn processed continuously with real-time déap implement a
job, synchronize it with the depot, update the jokthe runtime and schedule the new job in theimmtenvironment
configuration.

5. Exemplary Functionality: Composite Generation

Algorithms which are implemented within POLARA ceither be combined in one executable to allow tiusage of one
algorithm’s output as input to the next one, oitdpl several executables. The following examplsctibes the composite
generation, implemented as a POLARA job, usingalgerithm base class structure.

The composite creator is a tool to easily createlpets with a projected geographical context. R purpose, methods
are made available to the developer with whichtithesfer of the input data into the target prodsienabled.

For each composite product, an entry exists in rdigaration file, which defines the used basic dtiads (such as
projection, grid size, etc.). Another entry deteres the time context and the list of input datprcess. For each input data
an attribute is defined which determines its vafigieriod.

The process of creating a composite in POLARA fetidhe same principles like all other algorithm lempentations. An
algorithm manager checks at fixed time steps, \f data has arrived for processing. The algorithotessor controls the
data flow to and from the algorithm (see Fig. 4).

Manager

Processor Algorithm Processor

Adapter Composing Va_lue POSI.
retrieval processing

Fig. 4 Process of composite creation

The core components of the algorithm are the adgpthe sampling and composing, the value retriewal the post
processing.

5.1 Adapter

Each input data is assigned to a data transmit@r.each data transmitter, an adapter is implerdenthich adapts
different data structures or projections to thgeaproduct. After deployment of the input datathwy processor for each date
a data adapter is generated.

Moreover, it is here possible to take influencetio® incoming values. For the European data tratesrsjtdata range
adjustments are made to prevent strong gradiett®ioverlap region.

5.2 Sampling

For every input data, the position and size isrd@teed in the target grid. Afterwards the accompagyalue is taken for
the area in the target grid for every lattice &®lin the adaptor.

Such a procedure is usually called a ‘pull-meth@@ing et al. 2009) and has been used since 20@6eiDWD. An
extension that is known as ‘extended-pull-methattiidonally uses quality information.

For each type of input data, it is hecessary toausgecial sampling method. It is divided into potaesh, and point-based
data. The collected data values are stored in &it@m. The sampling can, if there is more thaniopet data, be executed
in parallel on multiple processor cores.

ERAD 2012 - THE SEVENTH EUROPEAN CONFERENCE ON RADAR IN TEEOROLOGY AND HYDROLOGY

5.3 Composing

The collected sample values are supplied in theposing to the target grid. Here it is also recordéith input data has
been processed. This makes it possible to malaenstnt which data is missing.

The three steps described in 5.1-5.3 are repeatéckither all the required input data have beercpssed or the time
frame of the composite has expired.

5.4 Value retrieval 4

At the value retrieval, the developer controls hthe
values of the grid cells are interpreted. This astipularly . _54”
necessary when there are multiple data valuesrferoell. '
Figure 5 shows the overlap of DWD weather radatee 1
dark green areas indicate that there are values fmo
radars, in light green regions three, in orange,fand in
red regions there are values from five radars.

Several possibilities for selection exist. For epamone
may use the maximum value, the value with the ssall
distance from the radar, or the value with the lopstlity -
information.

The three pictures in Fig. 6 below shows the oyped&
the radars Berlin (bln), Dresden (drs), Neuhausi)rsnd
Eisberg (eis). In the first picture the maximumuealwas
used, so the spokes from Dresden are completahjesisn
the second picture the smallest distance from ddarr is
used, so the spokes from Dresden only reach tha ¢ 48,
border. The third picture uses the value with tastlguality
value. So the spokes from Dresden are almost coetple
removed.

Fig. 6 Left: Maximum methodyliddle: Smallest distance to radaRight: Quality information

5.5 Post Processing
At the final step of the algorithm, the post praieg offers more opportunities to influence theadd&tor example, it is
possible to remove singular values or map valuetatgses. Here, also a border can be drawn araupty dattice cells.
Subsequent to the post-processing, the algoritrooessor steers the data stream to the algorithnageanHere the
results are passed to the POLARA data catalo@(tf.and can be further processed by other algosith

ERAD 2012 - THE SEVENTH EUROPEAN CONFERENCE ON RADAR IN VEOROLOGY AND HYDROLOGY

6. Conclusion and Outlook

In the last two years, POLARA grew to a completigesior developing, testing and running radar athons. The defined
environment for new developers keeps the code medrand accessible for others. Implementing ngerdhms and use
them with real-time data from the DWD radar netwisrkeduced to a minimum of redundant work and sueg by a large
amount of utility classes. The data catalog stmectuith related reader classes makes it easy tposupew data formats
without the need to change any existing code. By, T@OLARA contains, among others, algorithms foalgy assurance,
hydrometeor detection, or composite generation iangbing to be extended by quantitative precipitatestimation and
mesocyclone detection.

The composite creation, described as a POLARA jample in Chapter 5 will be the first algorithm ROLARA that
becomes operational and replaces legacy qualitatbreposite products from the DWD. To satisfy theed®e of an
operational job — being stable, reliable and adogrtb the DWD IT requirements — with the same cbdse as jobs that are
under development, the concept of POLARA needset@xtended. Hence we are working on a labelling laraeshching
concept for POLARA and will have tested nightlyIdsi

References
Lang, J., Siegmund, M., Sacher, D., 2009: RADOLANBarehandbuch Version 2.3.1.1

