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1. Introduction

Dual-polarimetric weather radar becomes prevalent for Quantitative Precipitation Estimation (QPE) in recent years. Es-
pecially, Ministry of Land, Infrastructure, Transport and Tourism (MLIT), Japan started deploying X-band Dual-polarimetric
radar network around great urban areas and local major cities for a real-time monitoring of heavy precipitation. Now 27 radars
in 11 areas have already been deployed, and more 8 radars will be installed by FY 2013. This real-time QPE system generates
a precipitation intensity data with the horizontal resolution of 250 m, and the data are updated every 1 minute (Maesaka et
al. 2011). In this system, the precipitation intensity (R) is calculated not from radar reflectivity (Z h) but from specific differ-
ential phase (KDP) for heavy or moderate rainfalls. Moreover, KDP is used for attenuation corrections of Zh and differential
reflectivity (ZDR). So the recent QPE progress in X-band radar is due to that the KDP becomes available.

The KDP is not directly observed by radar system (not a result of I/Q signal processing), but is calculated by a derivative
of a differential phase (ΦDP) with respect to range. Because the observed ΦDP contaminated by noise, and the differentiation
works as a high-pass filler, it is difficult to retrieve the originalKDP caused by meteorological phenomena. Thus local linear or
polynomial regressions are generally used to estimate the original KDP; however, these procedures make a spatial resolution
of the KDP coarse. Furthermore, a differential backscatter phase (δ) overlaps in the observed Φ DP. It is not negligible if
large precipitation particles exist in the radar beam. Scarchilli et al. (1993) estimated the differential backscatter phase from
the attenuation-corrected ZDR. Hubbert and Bringi (1995) proposed an iterative filtering technique to remove the backscatter
phase from the observed ΦDP. There are also recent studies on the robust KDP estimation with high spacial resolution, e.g.,
Wang and Chandrasekar (2009) and Otto and Russchenberg (2011).

At present, the stable version algorithms of KDP estimation in MLIT and National Research Institute for Earth Science
and Disaster Prevention (NIED) are based on the classical methods: the iterative filtering and the local linear regression
(Maesaka et al. 2011). These algorithms sometimes estimate a negative KDP in rainfall (below melting layer), though the
positive KDP is expected for pure rain drops. The negative KDP tends to be estimated in a weak rainfall area and far-side of
heavy precipitation. The former negative KDP is caused by the noise of ΦDP , and the latter is influenced by the differential
backscatter phase. This fake KDP is a problem in the MLIT and NIED algorithms, because it disable the rainfall estimation
and the attenuation correction.

In this paper, a new KDP estimation method is proposed by assuming the monotone increasing Φ DP below melting layer.
The KDP estimated by this new method always takes a positive value.

2. Method

In this method, we assume a monotone increasing ΦDP with respect to the range from radar (r). So the use of this method is
limited in rainfall (below melting layer). The monotone increasing Φ DP is fitted to the observed ΦDP by a variational approach.

2.1 Quality Control

At first, the observed data in or higher than melting layer should be rejected, because this method is only available for pure
rainfall. Of course, a precipitation particle identification can be used by using the dual-polarimetric information; however it
is not completely robust at present. The zero degree level information from sounding data or numerical simulations, and the
assumed melting layer depth (e.g., 500 m or 1000 m) may be useful for this purpose.

Then no precipitation (low S/N ratio) data, ground and point clutter data, and outlier data are rejected. Finally Φ DP unfolding
should be performed in case the ΦDP exceeds a expression range of 360 ◦ or 180 ◦.

2.2 Boundary Conditions

Figure 1 show a schematic range profile of the observed and analyzed Φ DP in this method. This method needs boundary
conditions Φnear and Φfar at the nearest and farthest ranges, respectively, as shown in Fig. 1. The final solution of Φ DP varies
between these boundary conditions.
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The nearest boundary Φnearis determined by the linear regression (Line LR–N in Fig. 1), which is calculated with the
specified number (e.g., 30) of available data (excluding the rejected data by the quality control) from the nearest range. If
the slope of the regression line is positive, the value of the regression line at the nearest range (r near) is used for the boundary
condition. Otherwise, the averaged value of the available data is used. The farthest boundary Φ far is determined in the same
manner. The specified number of available data from the farthest range are used for the linear regression (Line LR–F in Fig. 1).
The value of the regression line at the farthest range (r far) is used for the positive slope case, or the averaged value is used. In
the case of Fig. 1, the value of the regression line at the nearest range (the averaged value at the farthest range) is used because
the slope of the regression line is positive (negative), respectively.

2.3 Cost Function

Now the observed and final solution of differential phase are denoted as Ψ i and (ΦDP)i, respectively, where the suffix i is
an index of range (i = 0, 1, 2, · · · , N ). Here we define φi as,

φi = (ΦDP)i − Φnear. (1)

The definition of KDP is,

KDP =
1
2
∂ΦDP

∂r
, (2)

so (1) can be written as,

φ0 = 0, (3)

φi = 2
i−1∑
j=0

(KDP)jΔr (i = 1, 2, 3, · · · , N), (4)

where Δr is a range gate width. We introduce ki as,

k2
i = 2(KDP)iΔr, (5)

because we assume that the KDP always takes a positive value. With (5), (4) can be written as,

φi =
i−1∑
j=0

k2
j (i = 1, 2, 3, · · · , N). (6)

On the other hand, the reverse version of φ i (as φ′i shown in Fig. 1) is also defined as,

φ′i = Φfar − (ΦDP)i. (7)

Fig. 1 Schematic range profile of the observed and analyzed Φ DP in this method. Horizontal and vertical axes indicate the
range from radar and the differential phase, respectively. Dots indicate the observed differential phase (Ψ) at the range, and
blue solid line is a final solution of the differential phase in this method. Broken red lines are boundary conditions of the
differential phases (Φnear and Φfar) at the nearest and farthest ranges (rnear and rfar), respectively. Lines LR–N and LR–F are
linear regression lines to determine the boundary conditions Φnear and Φfar, respectively.
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Then the following equations are deduced in the same manner.

φ′i = 2
N∑

j=i+1

(KDP)jΔr

=
N∑

j=i+1

k2
j (i = 0, 1, 2, · · · , N − 1), (8)

φ′N = 0. (9)

The differences between the observed differential phase and the boundary conditions are also defined as,

ψi = Ψi − Φnear, (10)

ψ′
i = Φfar − Ψi. (11)

Here a cost function J to be minimized is defined as,

J = Jobs + J ′
obs + Jlpf, (12)

Jobs =
1
N

N∑
i=1

(φi − ψi)
2 , (13)

J ′
obs =

1
N

N−1∑
i=0

(φ′i − ψ′
i)

2
, (14)

Jlpf =
1

N + 1
Clpf

N∑
i=0

(
∂2ki

∂r2

)2

. (15)

Jobs and J ′
obs are mean square errors between the observed and analyzed differential phases. These terms of the cost function

make the analyzed differential phase fitted to the observed one. J lpf is a mean square of a Laplacian of k, and works as a low
pass filter. Clpf in (15) is a control parameter of the low pass filter.

We regard the range profile of k which minimizes the cost function as the final solution in this problem. The final K DP

is calculated from k by (5). To minimize the cost function, we used the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method,
which is a kind of numerical optimizations. The BFGS method needs the derivative of the cost function with respect to the
independent variables, and it is written as,

∂

∂ki
J =

∂

∂ki
(Jobs + J ′

obs) +
∂

∂ki
Jlpf, (16)

∂

∂ki
(Jobs + J ′

obs) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4k0

N

N∑
i=1

(φi − ψi) (i = 0),

4ki

N

i−1∑
i=0

(φ′i − ψ′
i) +

4ki

N

N∑
i=i+1

(φi − ψi) (i = 1, 2, 3, · · · , N − 1),

4kN

N

N−1∑
i=0

(φ′i − ψ′
i) (i = N),

(17)

∂

∂ki
Jlpf =

2
N + 1

Clpf
∂2

∂r2

(
∂2ki

∂r2

)
. (18)

Figure 2 shows the example profiles of the observed and the analyzed differential phases. The observed profile (blue line in
Fig. 2) is contaminated by the noise, and includes the significant backscatter phase around the range of 17 km, where big hails
might exist at that time. the analyzed profile (red line in Fig. 2) well corresponds with the observed one with the constraint of
the monotone increasing.

Figure 3 shows the KDP profiles calculated from the observed differential phase shown in Fig. 2. The K DP calculated by
the classical method (the local linear regression with the window width of 1 km; blue line in Fig. 3) fluctuates around 0 ◦ km−1

(e.g., in the ranges of 5 km – 10 km and 20 km – 30 km), and sometimes takes negative values. Especially, a large negative
value is estimated just behind the significant backscatter phase (around the range of 17 km in Fig. 2). On the other hand, the
KDP calculated by this method (Clpf = 1 × 1011) does not show such a fluctuation and negative values.

2.4 Dependency of Clpf

The parameter Clpf in (15) controls how the low pass filter effects. Here the dependency of the C lpf to the low pass filter is
examined by assuming that k is a periodic function with the wavelength of L as,

k = a sin
(

2π
L
r

)
. (19)
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Substituting (19) for (5), we get,

KDP =
a2

4Δr

{
1 − cos

(
2π
L/2

r

)}
. (20)

So the wavelength of the KDP is L/2 under the condition of (19). Substituting (19) for (15), we also get,

Jlpf ∼ lim
r→∞

1
r

[∫ r

0

(
∂2k

∂r2

)2

dr

]

=
16π4a2

L4
lim

r→∞

[
1
r

∫ r

0

sin2

(
2π
L
r

)
dr

]

=
8π4a2

L4
. (21)

On the other hand, Jobs and J ′
obs are the mean square errors of the differential phase observation. Defining these terms as σ 2

obs,
we get,

Jobs + J ′
obs = 2σ2

obs. (22)

If the term Jlpf is larger (smaller) than the term (Jobs + J ′
obs), the result becomes smoother (more detailed). So from (21) and

(22), a roughly estimated cut-off wavelength of the low pass filter is written as,

L ∼ π

√
2a
σobs

C
1
4

lpf. (23)

Fig. 2 The range profiles of the differential phase. Blue profile is observed by NIED’s X-band dual-polarimetric radar at Ebina,
Japan, at 1402 UTC 9 July 2005. The range gate width of this radar is 100 m. Red profile is analyzed from the observed data
by this method (Clpf = 1 × 1011).

Fig. 3 The range profiles of the specific differential phase calculated from the observed differential phase shown in Fig. 2.
Blue profile is estimated by the local linear regression with the regression width of 1km. Red profile is analyzed by this method
(Clpf = 1 × 1011).
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The dependency of the C lpf is summarized in Fig. 4.

3. Case study

This method is applied to the NIED’s X-band radar data observed at 0500 UTC 10 May 2012. Figure 5 shows the PPI
images observed by the radar. At this time, narrow and high (≥ 50 dBZ) reflectivity area located 20 km – 40 km northeast

Fig. 4 Dependency of the Clpf to the low pass filter in this method. The details of this figure is the same as Fig. 3. a)
Clpf = 1 × 109, b) Clpf = 1 × 1010, c) Clpf = 1 × 1011, d) Clpf = 1 × 1012, and e) Clpf = 1 × 1013.
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Fig. 5 PPI images of NIED’s X-band polarimetric radar at Ebina city at 0500 UTC 10 May 2012. The elevation angle is 1.2
◦. Range circles are drawn at 20 km intervals from the radar. a) Observed reflectivity (no attenuation correction), b) Observed
differential phase, c) Specific differential phase estimated by classic method (NIED stable algorithm: the iterative filter and
local linear regression; the data which S/N ration less than 10 dB are not used.), and d) Specific differential phase estimated
by this method (Clpf = 5 × 1010).

from the radar (Fig. 5a). Figures 5c and d show the calculatedKDP from the ΦDP shown in Fig. 5b by the classic (NIED stable
version: the iterative filter and the local linear regression) and this algorithms, respectively. Comparing this method with the
classic one, the KDP feature calculated by this method is narrower than that by classic method, and the highK DP area (≥ 1.0 ◦

km−1) shown in Fig. 5d well corresponds to the area where the reflectivity is larger than 45 dBZ.

4. Conclusions

The new method to estimate the non-negative KDP for the pure rainfall was proposed. This method made the monotone
increasing profile of ΦDP fitted to the observed ΦDP . The monotone increasing assumption mitigated the KDP fluctuation
in weak rainfall area. Furthermore the fake KDP by the backscatter differential phase δ was also suppressed, because the
severe backscatter occurred locally while the fitting was done in all range. However we should take account of the backscatter
differential phase in this method, in case the considerable backscatter exists in wide area. In this manner, (10) and (11) are
modified as,

ψi = Ψi − δi − Φnear, (24)

ψ′
i = Φfar − Ψi + δi. (25)

The backscatter differential phase may be parameterized by the attenuation-correctedZ DR .
By the classical KDP estimation, it is difficult to perform QPE from KDP for weak rainfall, because the KDP fluctuation is

not negligible in the weak rainfall area. So the Z–R relationship is used there. The stable and non-negative K DP enables the
QPE without the Z–R relationship for the weak rainfall.
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