
ERAD 2012 - THE SEVENTH EUROPEAN CONFERENCE ON RADAR IN METEOROLOGY AND HYDROLOGY

Dual-polarization spectral filter for radio frequency

interference suppression

Laura C. Rojas1, Dmitri N. Moisseev1, V.Chandrasekar1,2,3, Jason Sezler4, Reino Keränen5

1 University of Helsinki, Erik Palmenin Aukio 1. 00014 University of Helsinki, Finland. name.lastname@helsinki.fi
2Finnish Meteorological Institute,Erik Palmnin aukio 1, 00560 Helsinki, Finland.
3Colorado State University, 1373 Campus Delivery, CO 80523,USA.chandra@engr.colostate.edu
4Vaisala Inc,7a Lyberty Way Westford, Massachusetts 01886 USA, jason.selzler@vaisala.com
5Vaisala OYj,Vanha Numijärventie 21. 01670 Vantaa, Finland. reino.keranen@vaisala.com

(Dated: 27 May 2012)

1 Introduction

Radio local area networks (RLANs) operate in the band 5470-5725 MHz, which is also occupied by C-band weather
radars. Unfortunately, some of the RLAN devices are non-compliant; they occupy the frequency even in presence of
the radar signal at the same frequency band. There are numerous reports of non-compliant RLAN devices operating
in Eastern Europe, South America and India. This poses challenges for meteorological services in those regions.

RLAN interference contaminate the observations in certain azimuthal angles. In severe cases sectors of tens
of degrees can be affected. Ignoring observations from those angles is not the best approach because it would
result in big data loss.The second best solution, after making the devices compliant, is to filter out radio frequency
interference while preserving all weather echoes. Several studies have been done for filtering out ground clutter,
noise and non-stationary echoes from radar observations (Dixon et al. 2006),(Chanthavong et al. 2010). In this
study we demonstrate that dual-polarization spectral decomposition can be used for RF interference mitigation.

In this technique, range-velocity spectrograms are generated, and then by using image processing techniques the
discrimination between different spectral lines is achieved. It was previously reported, by Moisseev and Chandrasekar
(2009), that textures of differential reflectivity and differential phase and co-polar correlation spectrum can be used
in the construction of a spectral filter that rejects ground clutter and noise. Using the same principle, we define an
adaptive spectral filter for RLAN interference mitigation.

The methodology uses a fuzzy logic classification algorithm. The membership functions of the architecture are
defined based on RLAN interference cases from Helsinki University Kumpula radar. The performance of the dual-
polarization spectral filter is demonstrated on C-band radar observations from Finland, India and Brazil. The results
show that the proposed filter could be a suitable solution for mitigation of RLAN interference.

2 Measurements

The data used in this study corresponds to three different C-band radar observations, which are situated in Finland
(Kumpula), India (Delhi) and Brazil (Elefante). To study spectral properties of RF interference signals, dual
polarization time series observations were collected from 3rd to 5th of December 2005 by Kumpula radar, located at
the University of Helsinki (Finland). The presence of Radio local area networks signals was connected with the 16th

OSCE Ministerial Council, which took place in Helsinki those days. To test the approach the time series of India
and Brazil were superimposed, so that we have an appropriate case where both precipitation and RF interference
are present. India time series were collected on 11 Jan 2012 while Brazil time series were collected on 19 Nov 2011.
Both observations were in PPI mode with elevation angle of 0.5o.

3 Methodology

The starting point of this approach is the time series data from dual-polarization radar observations, which are used
to estimate the Doppler power spectrum for each polarization. Thus, for each range gate and each polarization a
time series of received voltages, Vr(h/v)(l), is collected and the power spectral density can be estimated as follows

(Bringi and Chandrasekar 2001)

Ŝ(vv/hh)[k] =

M∑
n=−M

w[n]R̂(v/h)[n]e
−j2πnk

N (1)

where N is the number of samples, w[n] is an optimized window of length 2M , used to reduce leakage between

spectral lines and minimize the amplitude error of the spectrum, and R̂[n] is a biased estimate of the autocorrelation
function defined as (Bringi and Chandrasekar 2001).

R̂(v/h)[l] =
1

N

N−l−1∑
n=0

Vr(h/v) [n+ l]V ∗
r(h/v)

[n] (2)
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After implementing the power estimation, time-range averaging is applied to the estimators to reduce the estimated
variance (Doviak and Zrnić 1993), and to decrease the number of samples in the processing. Thus, the averaged

power estimators ŜA(vv/hh)[k] are defined as follows:

ŜA(vv/hh)[k] =
1

M

M∑
m=1

Ŝ(vv/hh)[k] (3)

3.1 Spectral decompositions

From the mean sample average estimated powers for the two polarizations, ŜA(vv)[k] and ŜA(hh)[k], several parameters

can be calculated. In this study we will concentrate in three specific parameters: differential reflectivity Ẑd[k], co-

polar coherency spectrum ρ̂hv[k] and differential phase ψ̂dp[k]. They are defined as follows:

Differential reflectivity Ẑd[k]

This spectral decomposition is defined as the ratio in dB between the estimated power spectra for both
horizontal and vertical polarizations:

Ẑd[k] = 10log

[
Ŝ(hh)[k]

Ŝ(vv)[k]

]
(4)

Co-polar coherency spectrum ρ̂hv[k]

This polarization parameter estimate represents the correlation between the horizontal and vertical polarization
channels at a given point in the space at the same time:

ŜA(vv/hh)[k] =
|Ŝ(hh,vv)[k]|√
Ŝ(hh)[k]Ŝ(vv)[k]

(5)

where Ŝ(hh,vv)[k]| is the cross spectrum. It is obtained by applying averaged power estimation to the cross-

correlation function R̂hh,vv, which is defined as

R̂(hh,vv)[l] =
1

N

N−l−1∑
n=0

V ∗
r(hh)

[n+ l]Vr(vv) [n] (6)

Differential phase ψ̂dp[k]

This spectral decomposition is the argument of the cross spectrum Ŝ(hh,vv)[k]|:

ψ̂dp[k] = arg
[
Ŝ(hh,vv)[k]|

]
(7)

In this study we used these three specific parameters in creating range-velocity spectrograms for each gate. They
were calculated by applying fast Fourier transform to the weighted autocorrelation functions of the time series data.
These spectrograms mainly represent images. Left side of figure 1. depicts an example of these images, computed
from sectors dominated by RF interference with some precipitation in the range interval of 150 to 200km.

Previous studies (Moisseev and Chandrasekar 2009) have shown that by using image processing techniques over
some of these spectrograms, the discrimination between meteorological and non-weather targets is possible. This
is due to the existing difference in their spectral lines. Thus, our interest is to differentiate between them, so that
we are able to filter out those non meteorological signatures form the spectrum and achieve more accurate weather
radar observations. For this purpose we have chosen an image texture technique, which in this case is defined as a
function of the spatial variation in pixel intensities (Tuceryan and Jain 1998).

3.2 Texture calculation

Image textures are used to identify homogeneous regions, which are utilized to produce a classification map. This
map is used later to define the filter. The texture is the median filter of the two-dimensional standard deviation of
the image, using a 3x3 sliding window. The median filter is mainly used for reducing noise and preserving the edges
of the image. Right side of figure 1 shows the co-polar coherency coefficient, ρ, and the texture, SD, of Zd and ψdp.

As can be seen from the figure 1., there was a visual distinction between the spectral signatures of meteorological
and non-weather echoes, for instance, in range around 100km. Still, the properties of these echoes have to be
carefully studied to filter out those unwanted signatures in radar observations. Several studies have been carried out
to do so. In our study we follow the methodology proposed by Moisseev and Chandrasekar (2009). In this approach,
representative cases of precipitation, ground clutter and accurate noise estimation procedure (Chandrasekar et al.
1986) were considered. In each case the distributions of texture values SDZd, SDψdp and co-polar coherency

spectrum ρ were built.
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Figure 1: (Left) Power Zh, differential reflectivity Zdr, differential phase ψdp and (Right)co-polar coherency coefficient ρ

and textures SDZdr, SDψdp from superimposed observations collected in India and Brazil on 11 Jan 2012 and 19 Nov 2011

respectively, at an elevation angle of 0.5o and 35o in azimuth

Figure 2. in Moisseev and Chandrasekar (2009) presents these distributions for precipitation, ground clutter
and noise. Within the principal features of the distributions can be notice that: precipitation distributions were
narrow: SDZd values seemed to be not greater than 2dB, SDψdp values appeared not to exceed 15 degrees, and
ρ values tended to be always higher than 0.9. For clutter observations the results were notably different: SDZd

values were always greater than 2dB, SDψdp values exceeded 20 degrees, and ρ values seemed to have a very wide
distribution. In the noise case the distributions appear to overlap those of precipitation and clutter. However, it
can be noticed that SDZd values seemed to be centered around 1.5dB, a value greater than the precipitation’s mean
value of and lower than the one of the clutter.Also, SDψdp center value was always bigger than the center value of
both precipitation and clutter, and ρ values were distributed from 0 to 0.6 with mean value of 0.2.

RF interference spectral properties

RF interference is seen by weather radars as additive white noise (Joe et al. 2005). Using Kumpula radar observa-
tions and following the path presented above ρ, SDZd and SDψdp distributions were built. Figure 2 presents the
distributions for different azimuth angles where RF interference was seen.

Figure 2: ρ, SDZd and SDψdp distributions for RF interference

As can be seen, SDZd values spread from 1 to 18 dB with center value being 8dB, which is greater than in the
other cases. For SDψdp values a clear similarity with noise distribution was found. ρ distributions seemed to follow
the shape of the one presented for precipitation, with the difference being that for RF interference the curve started
to rise long before 0.9.

3.3 Classification

The difference in texture presented above suggests that we can construct classes in correspondence to the distributions
of texture values and co-polar coherency coefficient. Thus, the classification process is used to evaluate whether the
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received signals fulfill the properties of a certain class. For this reason, and in the same way as Moisseev and
Chandrasekar (2009), a fuzzy logic classification algorithm appeared to be an appropriate classification methodology
in this case.

The first step in the classification procedure was to define the membership functions, which assign each signal a
grade of membership ranging between zero and one (Zadeh 1965). In this study we used the membership functions
for precipitation, ground clutter and noise classes proposed by Moisseev and Chandrasekar (2009). We established
the membership functions for RF interference class. In all the cases bell-shaped membership functions were used.
The parameters were defined based on the distributions mentioned above, except for the precipitation (Moisseev
and Chandrasekar 2009). Figure 3 shows the membership functions used.

Figure 3: Membership functions for precipitation, ground clutter, noise and RF interference classes

Once the membership functions were defined, the following step was to determine the classification architecture
that was going to be used. Figure 4 shows the proposed architecture. The inputs of the system were ρ, SDZd and

Figure 4: Classification procedure block diagram

SDψdp for each range-Doppler bin. For a given input and for each class the degree of membership was calculated,
using the mentioned membership functions. The membership to certain class was determined by summing up the
contributions from each fuzzy set. It is important to mention that in the same way as exposed by Moisseev and
Chandrasekar (2009), for the ground clutter class a weighting factor was included to slightly force to ground clutter,
when the velocities were close to zero. After finding out the degree of membership of each range-Doppler cell, what
was left was to decide whether it was or not precipitation. To do so, first the membership of non-meteorological
signals were compared and the maximum was selected. Then, this maximum was compared with the membership
of precipitation, and the maximum value between those defined whether that cell corresponded to a meteorological
or non-weather signal. Utilizing this information a classification map was built, which ended up with the creation
of a precipitation mask Mk.

3.4 Moment Calculation

The last stage in the approach was to calculate the radar spectral moments. For this, first the Doppler power
spectrum was noise corrected ((Ŝvv/hh) − σ2

N ). Then a filtering was implemented using the precipitation mask,
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which was equal to one if the cell was classified as precipitation or zero otherwise. By doing so, just the cells
categorized as precipitation were left. And the spectral moments: reflectivity Zh, mean velocity v̂ and spectrum
width σ̂2

v were calculated as follows

Zh =
∑N−1

k Ŝvvf v̂ =
∑N−1
k vkŜvvf∑N−1
k Ŝvvf

σ̂2
v =

∑N−1
k [vk−v̂]Ŝvvf∑N−1

k Ŝvvf
(8)

where Ŝvvf = Mk

[
(Ŝvv)− σ2

N

]
, σ2

N is the noise power spectral density and vk are the point velocities. The

polarimetric variables can be calculated using equations 4,5 and 7 with the filtered values for Ŝvv, Ŝhh and Ŝhv.
To avoid possible power losses in reflectivity values, Gaussian interpolation was used over Ŝvvf . The interpolation

approach is similar to the one used by Siggia and Passarelli (2004).

4 Results

The dual-polarized spectral filter was tested in the radar observation mentioned before. The spectral filter appeared
to work in each case, even if the radar configurations were different. Thus, according to this preliminary study the
approach seems to lead to a standard model of the RF interference signals, which is independent of the location and
measurement conditions. Figure 5 demonstrate the performance of the classification procedure for this data set at
azimuth angle of 33o.

Figure 5: Classification for superimposed observations collected in India and Brazil on 11 Jan 2012 and 19 Nov 2011

respectively, at an elevation angle of 0.5o and 33o in azimuth

As can be seen there is a good discrimination between precipitation and non-weather cells. Ground clutter, noise
and RF interference appeared to be correctly classified in most of the cells. However, for some cells, due to the
strong interference or the different nature of the signal, the cells are categorized as precipitation even though that
was not the case. This happens for the cells in ranges larger than 250Km.

Figure 6 shows the PPI plots of the original and filtered data. This figure shows the performance of the adaptive
filter. It can be seen that the RF interference signatures in most of the bins were filtered out. Although, when the
RF interference was strong, for instance between 30o to 35o in azimuth, signs of the interference remained in the
filtered data. In any case the observations are a lot cleaner after the filtering.

5 Conclusions

In this study we use a polarimetric spectral filter in order to improve radar observations when RF interference is
present. The results show that when using this approach the radar observations and the polarimetric variables
show improvement in the data quality The use of interpolation when reflectivity is calculated produces less power
losses. It is important to mention that averaging and spectrum calculation using fast Fourier transform make the
approach faster, which is important for the real time implementation. In this study we did classification between
meteorological and non weather echoes, but classification results show that distinction between the different types
of non-meteorological echoes can also be achieved.
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Figure 6: PPI plots before and after filter for superimposed observations collected in India and Brazil on 11 Jan 2012 and 19

Nov 2011 respectively, at an elevation angle of 0.5o
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