Operational assimilation of radar data at convective scale in AROME France : current status and international cooperations

<u>Thibaut Montmerle¹</u>, Eric Wattrelot¹ and Carlos Geijo² CNRM-GAME (Météo-France/CNRS) ² AEMET (Spain)

ERAD, Toulouse, France (25-29 June 2012)

Outlines

- 1. Introduction: The AROME NWP system
- 2. Impact of radar data in AROME
- 3. Radar DA components
- 4. International cooperations
- 5. Perspectives

The AROME NWP system

- Operationnal since the end of 2008 (Seity et al. 2011)
- $\Delta x=2,5$ km, 60 vertical levels
- Realistic representations of clouds, turbulence, surface interaction...
- Coupled with ARPEGE

S. Malardel

- Cycled assimilation/forecast steps every 3h
- 3DVar, climatological **B** deduced from an ensemble assimilation
- Own surface analysis
- Comprehensive set of obs. assimilated, including radars

The AROME NWP system

- 24 radars from the ARAMIS network: between 3 and 12 PPIs/15', unambiguous velocity of 60 ms⁻¹
- 3 X-band radars currently tested (see Eric's talk later)

Number of assimilated observations:

Averaged daily impact on forecast error reduction $r = Tr(\mathbf{B}) - Tr(\mathbf{A}) = Tr(\mathbf{KHB})$

P. Brousseau

Impact on wind analysis

AROME: Analyses at 950hPa of divergence & horizontal wind

Bousquet, Montmerle and Tabary (2008)

Annual running averages of BSS normalized by the Lagrangian Persistency (6 to 24h forecast ranges)

Radar DA components

BUFR format using a cartesian or a polar grid: 1 header/elevation + (Z, DOW, Quality Flag)

Quality Flag:

• Echo types (types of clutters, specification of non rainy (but valid) pixels, precipitation types)

• Rain attenuation (exploitable for polarimetric radars, X-band) Corrections for beam blockage and for rain attenuation are done afterwards in AROME

Radar DA components: Observation operators

For operational NWP, such operators need to be fast and to take into account parallelisation of the code

⇒ Integration along the path unaffordable: Radar beam geometry computed considering the Earth's effective radius model, anaprop and attenuation not simulated

⇒ For DOW: see Montmerle and Faccani 2009, MWR ⇒ For Z: simulated reflectivity integrated within beam volumes (see Wattrelot et al.,2008, ERAD (operator derived from Caumont et al. 2006, JAOT)) ⇒ Profiles of RH deduced from surrounding simulated profiles of Z using a 1D Bayesian method (Caumont et al., 2010, Tellus)

1D+3DVar assimilation of Z

Use of model profiles in the vicinity of the observation as representative database:

Wattrelot et al. 2008, ERAD proceeding Wattrelot, 2009,joint ALD-HIRLAM Wkshp Caumont et al., 2010, Tellus

⇒ Retrieved profiles of RH assimilated in the 3DVar as pseudo-obs

+ Consistency between the retrieved profile and clouds/precipitations that the model is able to create; avoid TL/AD of diabatic processes

- Unrealistic solution possible if model too far from the reality

Radar DA components: Current studies

Optimisation of the use of radar data

• Use of specific background error covariances B in precipitations: enhancement of the q-div couling, smaller correlation lengths, analyzed fields better balanced

Montmerle and Berre 2010, QJRMS; Montmerle 2012, MWR

- Computation of the obs. error covariance matrix R using a posteriori diagnostics (see Eric Wattrelot's presentation later)
- **Revise thinning method** by assimilating more data from different radars which cover the same area (low inter-radar obs. error correlations)

Since 2004: « full code » cooperation between ALADIN and HIRLAM ⇒ some HIRLAM countries use BATODB+AROME (in so called « HARMONIE »)

• Météo-France is strongly involved in the EUMETNET OPERA programme (OD1 (QF) and OD3 (Volume distribution to NWP) working packages)

• Quality information proposed in OD1 for OPERA IV compatible with assimilation requirements in AROME

• MetNo has developed a **format converter called CONRAD**, aiming at converting local radar formats in BUFR for AROME/HARMONIE:

Many ongoing studies using CONRAD in different NWP systems:

- MetNo is evaluating the assimilation of both Z and DOW
- **KNMI** is assimilating successfully DOW of 2 radars and has tested the inclusion of some French radars
- works are ongoing in Austria, Croatia, Hungary...
- Assimilation of Z and DOW from spanish radars is currently evaluated in AROME-France in the HyMex framework

Assimilation of AEMET's radars in AROME

Assimilation of AEMET's radars in AROME: precip. forecast

3h Forecasts of Z (1500m)

 \Rightarrow Realistic enhancement of the southerly humid flux, bringing more precipitations over Catalonia

Radar Mosaic (2012032112)

• Technically OK, but more validation is needed

• 6 radars currently tested in quasi real time in AROME-WMED in order to prepare the first SOP this autumn

Conclusions

Assimilating Radar data in AROME allows:

- to improve forecast scores, especially for precipitations
- to capitalize on DOW
- to detect measurement failures through innovation monitoring

After 4 years of operational radar DA we can say that:

• An efficient pre-processing is essential to unfold/filter DOW and to identify clutters, especially non-rainy echoes

• Simultaneous assimilation of DOW and Z gives better result, allowing to retrieve mid to low level wind circulation that are coherent with RH structures. Assimilating only one of those parameters requires suitable forecast errors in precipitations

 \Rightarrow More work is however needed to optimize their use in DA (flow dependent **B**, more realistic **R**)

Conclusions

The usefulness of new types of radars, like X-band, need to be addressed in this context

It is now time to look behind our borders:

• Many international collaborations ongoing, thanks to the ALADIN/HIRLAM cooperations and the CONRAD software

 \Rightarrow Needs for the distribution of European flagged radar volume data (DOW+Z) : Development packages OD1 and OD3 in OPERA with strong implication of MF

Thanks for your attention!

AROME

26th of August 2011 12h, 12h forecast

References

- Brousseau P., L. Berre, F. Bouttier, and G. Desroziers, 2011: Background error covariances for a convective scale data assimilation system AROME-france 3dvar. Quart. J. Roy. Meteor. Soc., 137 :409–422.
- Bousquet O., T. Montmerle, and P. Tabary. Using operationally synthesized multiple-doppler winds for high resolution NWP model wind verification. 35 :L10803, 2008.
- Caumont, O., 2007 : Simulation et assimilation de données radar pour la prévision de la convection profonde à fine échelle. PhD of Université de Toulouse, 252 p
- Caumont O., et al., 2006: A radar simulator for high-resolution non-hydrostatic models. J. Atmos. Oceanic Technol., 23 :1049–1067.
- Caumont O., V. Ducrocq, E. Wattrelot, G. Jaubert, and S. Pradier-Vabre. 1d+3dvar assimilation of radar reflectivity data : a proof of concept. Tellus, 62, 2010.
- Montmerle, T_and C. Faccani, 2009: Mesoscale assimilation of radial velocities from Doppler radar in a pre-operational framework. *Mon. Wea. Rev,* vol 137, No. 6, 1939–1953.
- Montmerle T. and L. Berre. Diagnosis and formulation of heterogeneous background error covariances at mesoscale. Quart. J. Roy. Meteor. Soc., 2010.
- Seity, Y. et al., 2011: The AROME-france convective scale operational model. Mon. Wea. Rev., 139, 976–991.
- Tabary P., F. Guibert, L. Perier, and J. Parent-Du-Chatelet, 2006: An operational triple-PRT Doppler scheme for the French radar network. J. Atmos. Oceanic Technol., 23 :1645–1656.
- Wattrelot E., O. Caumont, S. Pradier-Vabre, M. Jurasek and G. Haase, 2008: 1D+3Dvar assimilation of radar reflectivities in the pre-operational AROME model at Météo-France *Erad2008, Helsinki (Finland)*.

Observation operators

- **Bi-linear interpolation** of the simulated wind
- Projection on the slanted direction of the radar beam (using the earth's effective radius model)
- No fall speed correction
- Side lobes contributions neglected
- **Broadening of the radar beam** simulated by a Gaussian function
- TL/AD
- $\sigma_{o} = f(r)$
- 15 km² thinning boxes
- no bias corrections applied in azimuth nor in intensity
- \Rightarrow More details in Montmerle and Faccani, 2009, MWR

Observation operators

Bi-linear interpolation of (*T*,*q*, *q*, *q*, *q*, *q*)
Compute radar reflectivity on each model level

Screening decisions

Ex: ABBE, BLAI, MCLA

- σ_o varies linearly with the distance from the radar to take into account error due to the beam broadening
- pixels 150 km away from the radar are not considered
- innovations (obs-guess) between +/- 20 ms⁻¹ are kept
- thinning within 15x15 km² boxes using a sorting criteria based on the distance and on the number of observations per profiles

Biais des vitesses radiales

Analyse et prévision des zones précipitantes Assimilation opérationnelle de vents Doppler Montmerle et Faccani (MWR, 2009)

Correction de biais

biais en amplitude et en azimuth possibles, même si le biais d'innovation est nul

⇒ Calculs de profils VAD observés et simulés sur plusieurs mois de données

• Biais proches de 0

 Calculs fortement dépendant de la stratégie d'échantillonnage et de la position des systèmes échantillonnés

Optimisation de l'utilisation des observations Prise en compte des erreurs de prévision dans les précipitations Montmerle, MWR, 2012

