

Doppler Radar Assimilation

David Simonin - Sue Ballard - Zhihong Li – Jean-Francois Caron Special thanks to the MetOffice Radar Team

© Crown copyright Met Office – ERAD 2012 Toulouse

Introduction

Doppler Radial Wind at the Met Office

- NDP
- Proposed modifications
- Results
- Conclusion

Met Office

Aim: Develop a NWP-based system to replace our current Lagrangian advection-based nowcasting system to focus on hazardous weather, especially flood risk

Radar data are the "perfect" candidate for assimilation:

• High resolution / High repetition time / Large coverage

The Nowcasting Demonstration Project (NDP) system has been running in real-time since May 2012

Doppler Wind at the Met Office

Met Office

- Doppler Radar:
 - 8 Doppler capable Radars (C Band)
 - Unambiguous velocity 48 m/s
 - 5 Elevations (1, 2, 4, 6, 9)
 - One volume scan every 5 minutes
- Preprocessing:
 - Centralised processing and QC (RadarNet)
 - Doppler PPI scan with QC flag
- Before Assimilation:
 - Additional QC (unfolding) using Model Background

Doppler Wind at the Met Office Operational setup

- Operationally used in UKV and UK4 from June 2011
- PPI scan (1 per Analysis All elevation):
- Super-Observation:
 - 3 ° x 5 range gates thinned (6km for UKV – 8km for UK4)
- Observation Operator:
- $v_r = u \sin \phi \cos \theta + v \cos \phi \cos \theta + w \sin \theta$
- Observation error:
 - Range from 2 to 3m/s with range

• NDP

• Doppler Radial Wind at the Met Office

NDP Model Domain

Met Office

Model	Resolution	VAR	Time Window	Cycling	Forecast Length	Doppler
UKV	1.5km	3D-Var	3	3 h	T+36	1 Vol. Scan
NDP	1.5 km	4D-Var	1	1 h	T+7	6 Vol. Scan

- 4 radars Doppler radial wind 6 times per hour
- 4 wind profilers every 15mins
- SEVIRI channel 5 (clear and over low cloud) and channel 6 (clear) every 15mins plus clear window channels over sea
- 3D moisture derived from cloud observations (satellite + surface reports)
- AMV (atmospheric motion vector)
- AMDAR 1 per hour
- hourly surface T,RH, wind, P, visibility
- Latent heat nudging with radar derived rain rates every 15mins

NDP Example 11th June 2012

NDP - Rain Rate At 08:00Z on 11/ 6/2012, from 05:00Z on 11/ 6/2012

STEPS rainrate (rate:2km) For 0800Z on 11/06/2012

Radar Rainfall Rate (composite:1km) For 0800Z on 11/06/2012

AAABO surface Atmos large scale rainfall rate kg/m2/s At 08:00Z on 11/ 6/2012, from 21:00Z on 10/ 6/2012

© Crown copyright Met Office

• Doppler Radial Wind at the Met Office

• NDP

Proposed modifications

Observation Error

© Crown copyright Met Office - ERAD 2012 Toulouse

Observation Error: Hollingsworth-Lonnberg

 Rely on the use of departure between the background and observation (innovations)

• Construct a histogram of background departure covariance against distance (d)

At d = 0
$$\rightarrow \sigma_{o}^{2} + \sigma_{b}^{2}$$

At d > 0 $\rightarrow \sigma_{b}^{2}$

 σ_{o}^{2} = Inst. Error + Rep. Error

Observation Error: Hollingworth-Lonnberg

Clee Hill - Height: 1700m - Winter

Observation Correlation length: 1-3 km

Equivalent to 2 to 5 gates

Observation Error:

Hollingsworth–Lonnberg

Met Office

• Doppler Radial Wind at the Met Office

• NDP

Proposed modifications

Observation Error

Beam Broadening

New Observation Operator

Radar measurement is a volume measurement

• Beam broadening:

$$w(\theta_z) = \exp\left[-3 \times \ln 2 \left(\frac{\theta_z^2}{\theta_3^2}\right)\right]$$
$$\theta_z^2 = \phi^2 - \theta^2$$
$$\theta_3^2 = 1^\circ$$

With Φ the beam elevation and θ the beam centre elevation.

- Reflectivity weighting:
- **Profile Definition**
 - -6dB below Bb
 - -2dB above Bb
 - Bb +10 dB

© Crown copyright Met Office - ERAD 2012 Toulouse

• Doppler Radial Wind at the Met Office

• NDP

- Proposed modification
- Results
- Conclusion

Scale-selective verification for rainfall accumulations

Comparing the fraction of rainy pixels for a given acc. threshold between Radar and model field at a given scale

© Crown copyright Me

- Control — New Error — New Obs Op. + New Er. © Crown copyright Me

- New and more realistic observation operator for Doppler radial wind
- New definition of the observation error for Doppler radial wind

Assimilation

- No extra cost
- More balance

Forecast

- Positive impact on precipitation up to T+2/T+3
- Improvement at low predictability scale

© Crown copyright Met Office - ERAD 2012 Toulouse