Assimilation of ground-based rainfall observations In ECMWF's global 4D-Var system

Philippe Lopez, ECMWF

Special thanks to P. Bauer, A. Geer, A. Fouilloux and D. Salmond (ECMWF)

NCEP Stage IV (NEXRAD) rainfall data assimilation.

SYNOP rain gauge assimilation.

Summary and prospects.

7th ERAD Conference, Toulouse, 24-29 June 2012

Direct 4D-Var assimilation of NCEP Stage IV rain data (Lopez 2011, MWR)

Observations:

- NCEP Stage IV radar + gauge precipitation product (4-km resol.).
- Data are averaged to model resolution prior to the assimilation.
- Domain: eastern USA.
- 6-hour accumulations are assimilated \rightarrow smoother & more linear (4D-Var).
- Ln(RR_{6h}[mm h⁻¹]+1) transform (background departures closer to Gaussian).

Quality control:

- Obs rejected in regions with either rugged orography, surface snowfall or ducting.
- Only points that are rainy in both background and obs are assimilated.
- Fixed observation error: $\sigma_o = 0.18$ (in log-space).
- Variational bias correction applied (Dee and Uppala, 2009).
- → In ECMWF's operations since 15 November 2011.

Direct 4D-Var assimilation of NCEP Stage IV rain data

- Improvement in short-range precipitation forecasts (up to 24h range).
- Impact on forecast scores for atmospheric parameters (Z, T, wind, RH):
 - neutral or slightly positive impact on the global scale.
 - some hint of a downstream positive impact over Europe and Asia.

Direct 4D-Var assimilation of SYNOP rain gauges (Lopez 2012, MWR, submitted)

• Based on the developments made for radar rain data assimilation (e.g. possibility to assimilate accumulated rainfall obs.).

Observations:

- SYNOP station 6-hour precipitation accumulations.
- Data are superobbed to model resolution prior to the assimilation.
- Domain: extratropics (too large errors in the tropics?).
- Ln(RR_{6h}[mm h⁻¹]+1) is actually assimilated in 4D-Var.

Direct 4D-Var assimilation of SYNOP rain gauges

Quality control:

- Obs rejected in regions with rugged orography, snowfall or strong winds.
- All points that are rainy in either background or obs are assimilated.
- Crude parametrization of representativity error (seasonal variations).
- Fixed contribution from other sources: $\sigma_{other} = 0.05$ (in log-space).
- Wind-induced error bias correction (based on Nešpor and Sevruk, 1999):

• Fixed bias correction BC = f(RR), for other sources of bias.

Direct 4D-Var assimilation of SYNOP rain gauges

Experimental set-up:

Two 4D-Var assimilation global experiments were run:

Experiment	Resolution	Period	Observational coverage
ERA_CTRL	T511 L91 (~40 km)	Apr-Jun 2011	SYNOP Psurf only
ERA_NEW	T511 L91 (~40 km)	Apr-Jun 2011	SYNOP Psurf + RGs (6h)

 \rightarrow to mimic ECMWF's future reanalysis of the early 20th century.

- → to assess the potential impact of rain gauge assimilation when the coverage in other observations is sparse.
- ~ 600 rain gauge superobs were assimilated per 4D-Var cycle (every 12 h).

4D-Var assimilation of SYNOP rain gauges

Number of used RG superobs per 2°x 2° box and per 4D-Var cycle T511 L91 experiment ERA_NEW (Apr-Jun 2011)

Results from pseudo-ERA experiments with RGs (1)

Forecast anomaly correlation (w.r.t. operational analyses) as a function of forecast range (0 to 10 days) (Apr-Jun 2011).

 \rightarrow Positive impact of RG assimilation, esp. over Europe.

©ECMWF 2012

Results from pseudo-ERA experiments with RGs (2)

Correlation of short-range forecast 10.8 μm brightness temperatures with Meteosat-9 imagery over Europe (Apr-Jun 2011):

Higher correlations \rightarrow improved spatial distribution of clouds when SYNOP RGs are assimilated.

Summary and prospects

Ground-based precipitation radars:

• NCEP Stage IV 6-hourly rainfall accumulations are now assimilated in ECMWF's operational 4D-Var.

 Plans: to use other radar networks (Europe, Japan, China,...) (issue of data policy).

Rain gauges:

- 4D-Var data assimilation of SYNOP 6-hour RG accumulations can have a significant positive impact on medium-range forecast scores when coverage in other observations is sparse.
- This might be beneficial in the context of future 20th century reanalyses.
- Plans: to test 4D-Var with 24h accumulations and relax screening of snowfall and tropical observations.
- + Hints of an improvement of surface analyses (e.g. soil moisture).

Thank you!

Early developments

• At ECMWF, work on the assimilation of ground-based precipitation radar data started in 2005, taking advantage of the developments for satellite microwave imager observations in rainy regions (Mahfouf, Marécal, Moreau, Bauer, Geer, Lopez).

First, an indirect 1D+4D-Var approach was tested with NCEP Stage IV hourly radar + gauge rain product over the USA:

Slightly positive impact on both analyses and forecast scores (up to 24h range only).

- Some limitations of 1D+4D-Var were identified → try direct 4D-Var instead.

1D+4D-Var assimilation of NCEP Stage IV rain data (Lopez and Bauer, 2007, MWR)

Three global assimilation experiments (20 May - 15 June 2005; T511 L60):

CTRL= all standard observations (ECMWF operational 4D-Var).CTRL_noqUS= CTRL – no moisture obs over US (from SYNOP, TEMP, satellites).NEW_noqUS= CTRL_noqUS + NCEP Stage IV hourly rain rates over US (1D+4D).

→ Rain data alone can have a substantial positive impact on analyses and forecasts.

Asymmetry of rain analysis increments

Statistics of direct 4D-Var assimilation of NCEP Stage IV data over eastern half of the USA in April-May 2009 (T511 L91; CY35R2).

Always easier to reduce precipitation than to increase it during assimilation, mainly as a result of the limiting effect of saturation.

Direct 4D-Var assimilation of NCEP Stage IV rain data

Short-range precipitation forecast is significantly improved.

Direct 4D-Var assimilation of NCEP Stage IV rain data Impact on precipitation FC as a function of FC range (6-72h) Sept-Oct 2009 average

(CY35R2; T511 L91 ≈ 37 km)

Filled symbols indicate significant differences (at 95% level)

Impact of NCEP Stage IV assimilation on 12h forecasts of precipitation. Sept-Oct 2009 average (T511 L91 ≈ 40km)

NCEP Stage IV observations

Wind-induced error bias correction (3)

• Fitted curves of relative wind-induced error (%) against measured rain rate and wind speed at gauge top for Mk2 and Hellmann gauges:

Hellmann larger than Mk2 gauge in size \Rightarrow stronger undercatch.

Results from pseudo-ERA experiments with RGs (3)

0-6h precipitation forecast scores against SYNOP RG themselves: Equitable Threat Score (ETS) and False Alarm Rate (FAR) (Apr-Jun 2011).

Results from pseudo-ERA experiments with RGs (4)

Comparison of top-layer soil moisture analyses (6-hourly) with in-situ NCRS-SCAN observations over the USA (from Clément Albergel)

Higher correlations → improved spatial distribution of soil moisture when SYNOP RGs are assimilated.