Comparison of polarimetric techniques for operational precipitation estimation in complex orography scenarios Vulpiani, G.¹, M. Montopoli^{2,3}, P. Giordano¹, A. Gioia¹ and Frank S. Marzano^{3,4}

7th European Radar Conference, Toulouse, 25-29 June 2012

- 1. Dipartimento di Protezione Civile Nazionale (DPC), Roma, Italy
- 2. Dipartimento di Ingegneria Elettrica e dell'Informazione Università dell' Aquila
- 3. Centro di Eccellenza CETEMPS, Via Vetoio, L'Aquila, 67100, Italy
- 4. Dipartimento di Ingegneria Elettronica, Sapienza Università di Roma, Italy.

Outline of the presentation

• Introduction:

- Motivation
- Environmental scenario
- Radar system

• Data processing chain

- Clutter mitigation & Partial Beam Blocking correction
- Φ_{dp} processing $\rightarrow K_{dp}$ estimation
- Attenuation correction
- Vertical Profile of Reflectivity (VPR) and Kdp (VPK) reconstruction
- Rainfall estimation: power-law & neural network

• <u>Results</u>

<u>Conclusions</u>

Acknowledgement

Thank you Andrea!!

Integrating a previous work (Vulpiani et al., JAMC, 2012) on the same topic (operational polarimetric rainfall estimation in complex orography)

In Vulpiani et al. (2012):

✤ a new K_{dp} retrieval technique was proposed

the K_{dp}-based rainfall algorithm was found to generally outperform the considered Z-R relationship

R(K_{dp}) was found less sensitive to range distance

R(K_{dp}) was found sensitive to ice contamination

- In the present work the following tasks are accomplished:
 - considering more rainfall events (5 more events for a total of 12)
 - tuning of the K_{dp} retrieval technique
 - * retrieval of the vertical profile of K_{dp} and ground-projection of K_{dp} fields

 evaluation of a neural network algorithm employing Z and K_{dp} for better dealing with DSD variations

- <u>Italy has Iper-complex orography</u>, a lot of small basins → need to have a dense network
- <u>Federated national weather</u> <u>radar network coordinated (at</u> <u>central level) by the Department</u> <u>of Civil Protection</u>
- <u>18 C-Band and 4 X-Band radars</u> +3 more planned C-band
- <u>The radar data used in this work</u> come from the operational Polarimetric Doppler Radar System located in Central (PDRS1)

Environmental scenario

Data processing chain

>Clutter removal: data quality concept

> **PBB correction**: Bech et al., (2003)

 ${\succ} \Phi_{dp}$ filtering and K_{dp} estimation: new technique

Attenuation correction: Vulpiani et al., (2008)

VPR reconstrution: real-time mean VPR computation

>VPK reconstrution: VPK computation on a daily basis

Rainfall estimation:

Z-R (Marshall and Palmer, 1948) applied to ground-projected VMI
R_{BC01}: R-K_{dp} (Bringi and Chandrasekar, 2001)
R_{BR11}: R-K_{dp} (Bringi et al., 2011)

•R_{NN}(Z, Kdp): Neural Network

Data processing chain: clutter removal

Identification by resorting to the data quality concept

based on the following input (X_i) :

- \succ Empirical CLUTTER Map (X₁)
- > Radial velocity, $Vr(X_2)$
- > Texture of: $\mathbf{Z}_{dr}(\mathbf{X}_3)$, $\rho_{hv}(\mathbf{X}_4)$, $\Phi_{dp}(\mathbf{X}_5)$

Data processing chain: Φ_{dp} filtering and K_{dp} estimation

Raw Φ_{dp} K_{dp} retrieval. Φ_{dp} unfolding STEP 1 First guess: K'dn YES K'_{dp} Check: K'_{dp} >Th**1** K'_{dp} <Threshold₃ NO STEP 2 within a ∆r-sized K'_{dp} < Th**2** window NO YES K'_{dp}=0 Φ_{dp} STEP 3 NO reconstruction YES STOP $\sigma(K_{dp})$ <Th3 K_{dp} retrieval. STEP 4 Final estimation

Notes: \succ it can be demonstrated that: $\sigma(K_{dp}) = \frac{1}{\sqrt{2N}} \frac{\sigma(\Psi_{dp})}{L}$ $\sigma(K_{dp})$ is about 0.05 deg km⁻¹ for $\sigma(\Phi_{dp}) = 3 \text{ deg}$ and L=7 km $\sigma(K_{dp})$ can be further reduced by iterating steps 3-4: $\sigma\left(K_{dp}^{(I)}\right) = \frac{1}{\sqrt{2N^{I}}} \frac{\sigma(\Psi_{dp})}{L}$

Data processing chain: attenuation correction

measurements: <u>**APDP**</u> (*Vulpiani et al. 2008*)

- Linear relationship: $\alpha_{hh,dp} = \gamma_{hh,dp} K_{dp} [dB/km]$
- $\gamma_{hh,dp}$ depend on drop size, shape and tempertaure
- $\gamma_{hh,dp}$ are optimized through an iterative hydrometeors classification

Rainfall Estimation

Algorithms

- R_{MP}(f(Z)): Marshall and Palmer (1948) with f(Z)= VPR(VMI(Z))
- **R**_{BC01}(g(K_{DP})): Bringi and Chandrasekar (2001)
- $\mathbf{R}_{BR01}(g(K_{DP}))$: Bringi et al. (2011) with $g(K_{DP}) = LBM(K_{DP})$
- R_{NN}(Z,K_{dp}), neural networks

Radar Gauge Comparison

Best-matching radar bins
 within 25 km² area around gauge position
 are compared with gauges
 (Silvestro et al., 2008)

Performance analysis

- BIAS: R_G/R_R,
 - FSE: RMSE/<R_G>
- Correlation coefficient

- VPR retrieved for each volume scan
- >VPK retrieved on a daily basis

Architecture

Multi Layer Perceptron (MLP) composed by >6 nodes at the 1° hidden layer >4 nodes at the 2° hidden layer

Training

The network is trained using **supervised learning**, with a training set D = (xi, ti) of known inputs and targets. Weights and biases are iteratively adjusted in order to minimize the network performance function, which normally is the sum square error.

The minimization is based on repeated evaluation of the gradient of the performance function using **back-propagation**

Regularization by input perturbation + considering an additional **term** within the objective function, e.g. $(1-\gamma)E_W$ where E_W is the sum of squares of the network's weights and biases.

Training data set

Simulations by means of the T-matrix scattering model.

Assumptions:

Axis ratio: Brandes et al. (2002)

•<u>Temperature</u>: T=10 $^{\circ}$ C

•RSD shape: N(D)=Nw (D/D0)^µ exp(-(3.67+µ)D/D0)

with 0.5<=D0<=3.5 mm, 2<=log(Nw)<=5, -1<=µ<=5

•<u>Canting angle</u>: Gaussian distribution mean=0 deg, std=10deg

Data set: 12 events

Results:

spatially-averaged cumulated rainfall

Z & K_{dp} are projected at ground

 $> K_{dp}$ can be used successfully used for operational rainfall estimation in complex terrain conditions, it being immune to partial PBB and attenuation

K_{dp}-based algs perform relatively well even at far ranges

► In about 70 % of the cases the ground-projection of K_{dp} by means Vertical Profile of K_{dp} (VPK) improved the rainfall estimation reducing the ice-contamination effects

The neural network algorithm $R_{NN}(Z, K_{dp})$ generally outperformed the considered K_{dp} -based rainfall algorithm

Bech, J., B. Codina, J. Lorente, and D. Bebbington, 2003: The sensitivity of single polarization weather radar beam blockage correction to variability in the vertical refractivity gradient. *J. Atmos. Oceanic Technol.*, 20, 845–855.

Bringi, V. N., and V. Chandrasekar, 2001: Polarimetric Doppler Weather Radar. Cambridge University Press, 636 pp.

Bringi, V. N., M. A. Rico-Ramirez, and M. Thurai, 2011: Rainfall estimation with an operational polarimetric C-Band radar in the United Kingdom: comparison with gauge network and error analysis. J. Hydrometeor., 12, 935-954.

Marshall, J. S., and W. M. Palmer, 1948: The distribution of raindrops with size. *J. Meteor.*, 5, 165–166.

Silvestro, F., N. Rebora, and L. Ferraris, 2009: An algorithm for real-time rainfall rate estimation using polarimetric radar: Rime. *J. Hydrometeor.*, 10, 227–240.

Vulpiani, G., P. Tabary, J. P. D. Chatelet, and F. S. Marzano, 2008: Comparison of advanced radar polarimetric techniques for operational attenuation correction at C band. *J. Atmos. Oceanic Technol.*, 25, 1118–1135.

Vulpiani, G., M. Montopoli, L. Delli Passeri, A. G. Gioia, P. Giordano, and F. S. Marzano, 2012: On the use of dual-polarized C-band radar for operational rainfall retrieval in mountainous area. *J. Applied Meteor. Climat.*, 51, 405-425.

Questions?

"The important thing is not to stop questioning. Curiosity has its own reason for existing." - Albert Einstein

Thank you Andrea!!

Date	Score	R(Z)	R _{BC01} (K _{dp})	R _{BR11} (K _{dp})	R _{NN} (Z, K _{dp})
	FSE	0.54	0.14	0.18	0.10
	СС	0.71	0.97	0.95	0.98
2009/06/01	Bias	2.33	1.03	1.06	1.01
	FSE	0.43	0.42	0.49	0.34
	СС	0.89	0.88	0.84	0.93
2009/06/21	Bias	1.67	1.16	1.22	1.08
	FSE	0.53	0.11	0.21	0.08
	СС	0.82	0.99	0.98	0.99
2009/09/21	Bias	1.56	1.01	1.04	0.99
2009/10/22	FSE	0.72	0.24	0.28	0.21
	СС	0.32	0.89	0.86	0.91
	Bias	2.78	1.11	1.17	1.04
2009/10/23	FSE	0.49	0.17	0.20	0.17
	СС	0.54	0.91	0.88	0.91
	Bias	1.95	1.07	1.10	1.04
2010/09/10	FSE	0.57	0.42	0.47	0.34
	СС	0.60	0.73	0.67	0.80
1	Bias	2.30	1.65	1.79	1.34

Date	Score	R(Z)	R _{BC01} (K _{dp})	R _{BR11} (K _{dp})	R _{NN} (Z, K _{dp})
2010/09/11	FSE	0.60	0.53	0.58	0.48
	СС	0.75	0.70	0.66	0.74
	Bias	2.66	1.98	2.14	1.75
2010/11/01	FSE	0.70	0.42	0.47	0.38
	CC	0.18	0.62	0.56	0.69
	Bias	2.59	1.18	1.27	1.11
2010/11/02	FSE	0.76	0.38	0.45	0.34
	СС	0.47	0.65	0.50	0.73
	Bias	3.58	1.37	1.50	1.30
2010/11/09	FSE	0.70	0.43	0.47	0.38
	CC	0.02	0.38	0.31	0.46
	Bias	3.22	1.45	1.57	1.32
2011/03/01	FSE	0.79	0.34	0.35	0.34
	CC	0.31	0.63	0.59	0.63
	Bias	4.06	1.21	1.29	1.20
2011/03/02	FSE	0.67	0.34	0.38	0.30
	СС	0.53	0.56	0.49	0.65
	Bias	3.30	1.31	1.41	1.25

Artificial Neural Networks

What a NN is? Biological model of human brain able to learn from experience → A Powerful inversion technique

An artificial neural network is a non-linear parameterized mapping from an input x to an output y=NN(x; w, M)

where w=vector of parameters relating the input x to the output y, M=functional form of the mapping (i.e., the architecture of the net).

The multi-layer perceptron architecture (MLP), considered here, is a mapping model composed of several layers of parallel processors.

It has been theoretically proven that one-hidden layer MLP networks may represent any non-linear continuous function (Haykin, 1995), while a twohidden layer MLP may approximate any function to any degree of nonlinearity taking also into account discontinuities (Sontag, 1992).

Artificial Neural Networks

NN Training

- The network is trained using supervised learning, with a training set D = (xi, ti) of inputs and targets. During training the weights and biases are iteratively adjusted in order to minimize the so called network performance function, which normally is the sum squared error:
- The minimization is based on repeated evaluation of the gradient of the performance function using backpropagation, which involves performing computations backwards through the network

Neural Network Optimization:

minimization and regularization techniques

MINIMIZATION

- The performance of the algorithm is very sensitive to the proper setting of the learning rate. For this reason, a back propagation training with an adaptive learning rate is crucial. Battiti's "bold driver" technique has been implemented in this work. It can be summarized as follows.
- First, the initial network output and error are computed for a given value of $\eta 0$. If the performance function decreases, the learning rate is then increased by a factor ρ (=1.1). On the contrary, if E_D increases this is taken as an indication that the step made was too large and $\eta 0$ is decreased by a factor σ (=0.7), the last change is cancelled, and the search process is continued. The process of reduction is repeated until a step is found that decreases the performance function.
- Gradient descent may get stuck in local minima of the performance function. The best strategy in this case is to orient the search towards the local minima, but the form of the error function may be such that the gradient does not point in this direction. Following the gradient direction can lead to large oscillations of the search process. The problem can be overcome by including a momentum term in the weight updates. Momentum can be added to back propagation learning by making weight changes equal to the sum of a fraction of the last weight change and the new change suggested by the back propagation rule

$$\Delta w_{ij}(t) = (m-1)\eta_0 \frac{\partial E_D}{\partial w_{ij}} + m\Delta w_{ij}(t-1)$$

REGULARIZATION

The procedure to improve generalization, called regularization, adds an additional term to the objective function which becomes

$$E_R = \gamma E_D + (1 - \gamma) E_W$$