Comparison of polarimetric techniques for operational

precipitation estimation in complex orography scenarios
Vulpiani, G.1, M. Montopoli*3, P. Giordano?, A. Gioia! and Frank S. Marzano3#

Dipartimento di Protezione Civile Nazionale (DPC), Roma, Italy

. Dipartimento di Ingegneria Elettrica e dell'Informazione — Universita
dell” Aquila

. Centro di Eccellenza CETEMPS, Via Vetoio, L’ Aquila, 67100, Italy Eﬁﬁﬁﬁﬁﬂ:}.{:
Dipartimento di Ingegneria Elettronica, Sapienza Universita di Roma,  vissimerts es Protarens Givi

Italy.




7th European Radar Conference, Toulouse, 24-29 June 2012

€3 A Outline of the presentation

FROTEZDONE CIVILE
Fapdaes a0 Done gl e BFaA
Cica pams del Preiesoss Cuip

e |ntroduction:
— Motivation
— Environmental scenario
— Radar system

e Data processing chain
— Clutter mitigation & Partial Beam Blocking correction
— @y, processing 2 K, estimation
— Attenuation correction
— Vertical Profile of Reflectivity (VPR) and Kdp (VPK) reconstruction
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€3 A Motivation
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» Integrating a previous work (Vulpiani et al., JAMC, 2012) on the same topic
(operational polarimetric rainfall estimation in complex orography)

»In Vulpiani et al. (2012):
“* a new Ky, retrieval technique was proposed

** the K;,-based rainfall algorithm was found to generally outperform the
considered Z-R relationship

X8 R(de) was found less sensitive to range distance
* R(Ky4,) was found sensitive to ice contamination
»In the present work the following tasks are accomplished:
+» considering more rainfall events (5 more events for a total of 12)
** tuning of the K retrieval technique
** retrieval of the vertical profile of Ky, and ground-projection of K, fields

** evaluation of a neural network algorithm employing Z and K, for better
dealing with DSD variations
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€ A Introduction
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e |taly has Iper-complex orography,
a lot of small basins=>need to
have a dense network

e Federated national weather
radar network coordinated (at
central level) by the Department
of Civil Protection

e 18 C-Band and 4 X-Band radars
+3 more planned C-band

e The radar data used in this work
come from the operational
Polarimetric Doppler Radar
System located in Central
(PDRS1)
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€3 A Environmental scenario
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4 Data processing chain
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Data
processing
chain

.......................................................

External Data

Radio
=ounding

Temperature
field
retrieval

Radar (SAai=ls Oy Filtering | | sttenuation| |VPR & VPK
& PBB & . —
Data : . correction ID
correction Kqp estim.
Zar Ralnfall 2 & Ky,
Calibration ’| estimation | ground
projection

»Clutter removal: data quality concept
» PBB correction: Bech et al., (2003)

>y, filtering and K, estimation: new
technique

»Attenuation correction: Vulpiani et al.,
(2008)

>»VPR reconstrution: real-time mean VPR
computation

»VPK reconstrution: VPK computation on
a daily basis

» Rainfall estimation:
®Z-R (Marshall and Palmer, 1948)
applied to ground-projected VMI
*Rgcoi: R-Kyp, (Bringi and
Chandrasekar, 2001)
*Rgrii R-Kyp (Bringi et al., 2011)
*R\(Z, Kdp): Neural Network
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@ A Data processing chain:
=eew=  Clutter removal

|dentification by resorting to the data quality cept
based on the following input (X

» Empirical CLUTTERMap (X,)

» Radial velocityVr (X,)

» Texture of:Zy (X3), Pry (Xy), Pgp (Xs)

| , Degree of membership to the non-meteorological
|class (d;) as derived by the j-th input
I

W,

|
I
I
: O IfXJ<X1,jorXJ>X4J: |_______________I
4 :<(Xj =X, %, =Xy ) Xy <X <Xg | 1
: | (X4,j _Xj)/(x4,j _xaj) if X3,j<Xj <X4,j : ;' """""" _"""i
| 1 if X, <X, <X, , : Overal Inquallty |
! ! 2wa !
_____________________________ 1 qclutter = ln |
I I
I I
I I
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QA

Data processing chain:

Notes:

» it can be demonstrated that:
1 U(Lpdp)

V2N L

U(de):

mimom @y Tiltering and Ky, estimation
Raw @,
STEP1 Firzipgﬁe;rsig:v?(l’.dp ) un%&ing ]
YES

STEP 2

STEP 3

STEP 4

K'gp Check:
Kap >Th1
Kap < Th2

K'gp <Threshold,
within a Ar-sized
window

(I:dp _
reconstruction

Kqp retrieval.
Final estimation
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b S : retrieval = X Large Drops
P a ’ + Medium Rai
- lcpi edium xaifi
l_{l N - _ Light Rain
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i : : 1: . .
1 v v ' Attenuation correction based on @,
{1 |BasicZy, Z, sreenzioer K measurements: APDP (Vulpiani et al. 2008
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E | hh,dp hh,dp * “dp
i 1
Y : * Yhn.dp dEPENd on drop size, shape and
H i 1 y
el 22— Te¥e | tempertaure

: correction optimization :

: :

| 1



7th European Radar Conference, Toulouse, 24-29 June 2012

- "'
i

PROTEZMONE CIVILE
Foudecs B Do gl s Bari
Tecat Pamra ool Frgitsode [ w

Algorithms
e Ryp(f(Z)): Marshall and Palmer (1948)
with f(Z)= VPR( (2))

*  Rgo1(9(Kpp)): Bringi and Chandrasekar
(2001)

*  Rgro1(9(Kpp)): Bringi et al. (2011)
with g(Kpp)= LEM(Kp,p)

*  Ru(ZKy,), neural networks

Radar Gauge Comparison

e Best-matching radar bins

within 25 km? area around gauge position

are compared with gauges

(Silvestro et al., 2008)

Performance analysis

e BIAS: Rg/Rq,

e FSE: RMSE/<Rg>

e Correlation coefficient

A; Rainfall Estimation

Height a5k [kr]

> VPR retrieved for each volume scan

»VPK retrieved on a daily basis

ZorKy

profiles

1

E Vertical section of radar volum '

B NN I
I...... . BM
'Y

b

-0 0 30 100

Range distance [km]



7th European Radar Conference, Toulouse, 24-29 June 2012

QA Neural Network: Ry (Z,Kgp)
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Architecture

Multi Layer Perceptron (MLP) composed by
>6 nodes at the 1° hidden layer

>4 nodes at the 2° hidden layer

Training

»The network is trained using supervised learning, with a training set D = (xi, ti) of known
inputs and targets. Weights and biases are iteratively adjusted in order to minimize the network
performance function, which normally is the sum square error.

»The minimization is based on repeated evaluation of the gradient of the performance function
using back-propagation

»Regularization by input perturbation + considering an additional term within the objective
function,e.g. (1-y)E,, where E,, is the sum of squares of the network’s weights and biases.

Training data set
Simulations by means of the T-matrix scattering model.
Assumptions:
Axis ratio: Brandes et al. (2002)
eTemperature: T=10° C
*RSD shape: N(D)=Nw (D/DO)" exp(-(3.67+)D/D0)
with 0.5<=D0<=3.5 mm, 2<=log(Nw)<=5, -1<=l<=5
eCanting angle: Gaussian distribution mean=0 deg, std=10deg
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QA  Dpataset: 12 events
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: Results:
QA

~mowen:  SPAflally-averaged cumulated rainfall
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A Results: Mean Bias

i‘ﬂf E

PROTEZMONE CIVILE
Foudecs B Do gl s Bari
Fecat rara ol Prefreoms L p

Threshold on
the estimated
1-h rainfall:

Th=0.2 mm

Event of 2011/03/01

1.5

1.4

] == RBR11,VPK( dp)

=l Rch(de)

+ RBR11(de) ....................... ...................................... ...... IR ............................. _

—— RBC(H,VPK(de)
K

= By (£ K dp)

09

0.8

0.7r

GMT [h]




7th European Radar Conference, Toulouse, 24-29 June 2012

QA Conclusions
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»Kyp can be used successfully used for operational rainfall
estimation in complex terrain conditions, it being immune to
partial PBB and attenuation

»Kgp-based algs perform relatively well even at far ranges

»In about 70 % of the cases the ground-projection of Ky, by
means Vertical Profile of Ky, (VPK) improved the rainfall
estimation reducing the ice-contamination effects

»The neural network algorithm Ry (Z,Ky,) generally
outperformed the considered K,-based rainfall algorithm



7th European Radar Conference, Toulouse, 24-29 June 2012

€ A Bibliography

FROTEZDONE CIVILE

Fapdaes a0 Done gl e BFaA
Cica pams del Preiesoss Cuip

Bech, J., B. Codina, J. Lorente, and D. Bebbington, 2003: The sensitivity of single polarization
weather radar beam blockage correction to variability in the vertical refractivity gradient. J.
Atmos. Oceanic Technol., 20, 845-855.

Bringi, V. N., and V. Chandrasekar, 2001: Polarimetric Doppler Weather Radar. Cambridge
University Press, 636 pp.

Bringi, V. N., M. A. Rico-Ramirez, and M. Thurai, 2011: Rainfall estimation with an operational
polarimetric C-Band radar in the United Kingdom: comparison with gauge network and error
analysis. J. Hydrometeor., 12, 935-954.

Marshall, J. S., and W. M. Palmer, 1948: The distribution of raindrops with size. J. Meteor., 5,
165-166.

Silvestro, F., N. Rebora, and L. Ferraris, 2009: An algorithm for real-time rainfall rate estimation
using polarimetric radar: Rime. J. Hydrometeor., 10, 227-240.

Vulpiani, G., P. Tabary, J. P. D. Chatelet, and F. S. Marzano, 2008: Comparison of advanced
radar polarimetric techniques for operational attenuation correction at C band. J. Atmos.
Oceanic Technol., 25, 1118-1135.

Vulpiani, G., M. Montopoli, L. Delli Passeri, A. G. Gioia, P. Giordano, and F. S. Marzano, 2012:
On the use of dual-polarized C-band radar for operational rainfall retrieval in mountainous area.
J. Applied Meteor. Climat., 51, 405-425.



7th European Radar Conference, Toulouse, 24-29 June 2012

QA

PROTEZMONE CIVILE
Foudecs B Do gl s Bari
Fecat rara ol Prefreoms L p

Questions?

“The important thing is not to stop questioning.
Curiosity has its own reason for existing.”
- Albert Einstein
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A Error scores
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Date score | R@ | Rocuap) | ReruKe) | Ran@ Kgp) Date Score | R(Z2) | Rgeoa(Kgp) | RerilKgp) | RunlZ: Kyp)

FSE 0.54 0.14 0.18 0.10 2010/09/11 FSE 0.60 0.53 0.58 0.48

cc 0.71 0.97 0.95 0.98 cC 0.75 0.70 0.66 0.74

2009/06/01 Bias 2.33 1.03 1.06 1.01 Bias 2.66 1.98 2.14 1.75
FSE 0.43 0.42 0.49 0.34 2010/11/01 FSE 0.70 0.42 0.47 0.38

cc 0.89 0.88 0.84 0.93 cc 0.18 0.62 0.56 0.69

2009/06/21 Bias 1.67 1.16 1.22 1.08 Bias 2.59 1.18 1.27 1.11
FSE 0.53 0.11 0.21 0.08 2010/11/02 FSE 0.76 0.38 0.45 0.34

cc 0.82 0.99 0.98 0.99 cc 0.47 0.65 0.50 0.73

2009/09/21 Bias 1.56 1.01 1.04 0.99 Bias 3.58 1.37 1.50 1.30
2009/10/22 FSE 0.72 0.24 0.28 0.21 2010/11/09 FSE 0.70 0.43 0.47 0.38
cc 0.32 0.89 0.86 0.91 cc 0.02 0.38 0.31 0.46

Bias 2.78 1.11 1.17 1.04 Bias 3.22 1.45 1.57 1.32

2009/10/23 FSE 0.49 0.17 0.20 0.17 2011/03/01 FSE 0.79 0.34 0.35 0.34
cc 0.54 0.91 0.88 0.91 cc 0.31 0.63 0.59 0.63

Bias 1.95 1.07 1.10 1.04 Bias 4.06 1.21 1.29 1.20

2010/09/10 FSE 0.57 0.42 0.47 0.34 2011/03/02 FSE 0.67 0.34 0.38 0.30
cc 0.60 0.73 0.67 0.80 cc 0.53 0.56 0.49 0.65

Bias 2.30 1.65 1.79 1.34 Bias 3.30 1.31 1.41 1.25
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Q A:;, Artificial Neural Networks
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What a NN 1S?

Biological model of human brain ableto learn from
experience > A Power ful inversion technique

An artificial neural network is a non-linear parameterized mapping from an
input X to an output y=NN(x; w, M)

where w=vector of parameters relating the input x to the output vy,
M=functional form of the mapping (i.e., the architecture of the net).

The multi-layer perceptron architecture (MLP), considered here, is a mapping
model composed of several layers of parallel processors.

It has been theoretically proven that one-hidden layer MLP networks may
represent any non-linear continuous function (Haykin, 1995), while a two-
hidden layer MLP may approximate any function to any degree of non-
linearity taking also into account discontinuities (Sontag, 1992).
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Q A:;, Artificial Neural Networks
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NN Training

» The network is trained using supervised learning, with a
training set D = (xi, ti) of inputs and targets. During training
the weights and biases are iteratively adjusted in order to
minimize the so called network performance function, which
normally is the sum squared error:

» The minimization is based on repeated evaluation of the
gradient of the performance function using back-
propagation, which involves performing computations
backwards through the network
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Q_A Neural Network Optimization:
mmovers  mMinimization and regularization techniques
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MINIMIZATION

B The performance of the algorithm is very sensitovéhe proper setting of the learning rate. For
this reason, a back propagation training with aapéde learning rate is crucial. Battitis
“bold driver’ technique has been implemented in this work. Itl@summarized as follows.

First, the initial network output and error are quied for a given value of|0. If the performance
function decreases, the learning rate is then ase@ by a factgr (=1.1). On the contrary, if £
increases this is taken as an indication thattée made was too large amd is decreased by a
factoro(=0.7), the last change is cancelled, and the Bgamcess is continued. The process of
reduction is repeated until a step is found thatekses the performance function.

B Gradient descent may get stuck in local minimaheffierformance function. The best strategy
in this case is to orient the search towards tballminima, but the form of the error function
may be such that the gradient does not point ;xdliection. Following the gradient direction
can lead to large oscillations of the search pmcHse problem can be overcome by including a
momentum term in the weight updates. Momentum eaaduled to back propagation learning
by making weight changes equal to the sum of aifraof the last weight change and the new
change suggested by the back propagation rule

B () = (=1, 52+ mew (£
Wi

REGULARIZATION

B The procedure to improve generalization, calledilaization, adds an additional term to the
objective function which becomes

E.=VE;, +(1_V)EW



