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MotivationMotivation
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� Integrating a previous work (Vulpiani et al., JAMC, 2012) on the same topic 

(operational polarimetric rainfall estimation in complex orography)

�In Vulpiani et al. (2012): 

� a new Kdp retrieval technique was proposed

� the Kdp-based rainfall algorithm was found to generally outperform the 

considered Z-R relationship

� R(Kdp) was found less sensitive to range distance 

� R(Kdp) was found sensitive to ice contamination

�In the present work the following tasks are accomplished:

� considering more rainfall events (5 more events for a total of 12)

� tuning of the Kdp retrieval technique

� retrieval of the vertical profile of Kdp and ground-projection of Kdp fields

� evaluation of a neural network algorithm employing Z and Kdp for better 

dealing with DSD variations
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•• Italy has Italy has IperIper--complex orographycomplex orography, 

a lot of small basins�need to 

have a dense network

•• Federated national weather Federated national weather 

radar  network coordinated (at radar  network coordinated (at 

central level) by the Department central level) by the Department 

of Civil Protectionof Civil Protection

Introduction

of Civil Protectionof Civil Protection

•• 18 C18 C--Band and 4 XBand and 4 X--Band radars Band radars 

+3 more planned C+3 more planned C--bandband

•• The radar data used in this workThe radar data used in this work

come from the operational 

Polarimetric Doppler Radar 

System located in Central 

(PDRS1)



Environmental scenarioEnvironmental scenario
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Visibility at 1.6 degVisibility at 0.8 deg

Visibility at 2.0 deg



Data processing chain
�Clutter removal: data quality concept 

� PBB correction: Bech et al., (2003)

�ΦΦΦΦdp filtering and Kdp estimation: new 
technique

�Attenuation correction: Vulpiani et al., 
(2008)

�VPR reconstrution: real-time mean VPR 
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�VPR reconstrution: real-time mean VPR 
computation

�VPK reconstrution: VPK computation on 
a daily basis

� Rainfall estimation:
•Z-R (Marshall and Palmer, 1948) 
applied to ground-projected VMI
•RBC01: R-Kdp  (Bringi and 
Chandrasekar, 2001)
•RBR11: R-Kdp  (Bringi et al., 2011)
•RNN(Z, Kdp): Neural Network



Identification by resorting to the data quality concept 

based on the following input (Xj):

� Empirical CLUTTERMap (X1)

� Radial velocity,Vr (X2)

� Texture of: Zdr (X3), ρρρρhv (X4), ΦΦΦΦdp (X5)

Data processing chain:Data processing chain:
clutter removalclutter removal
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Degree of membership to the non-meteorological 
class (dj) as derived by the j-th input
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STEP 1 - Kdp retrieval (first guess). 
K’dp is retrieved from Ψdp through a finite-

difference scheme over a moving 
window of length L = 7 km;

STEP 2: Kdp check. A special care is taken 
to treat the Kdp values that are not 

Data processing chain:  
Φdp filtering and Kdp estimation

STEP 1

Notes:

� it can be demonstrated that: 

σ(Kdp) is about 0.05 deg km−1
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to treat the Kdp values that are not 
manifestly physical

STEP 3 - ΦΦΦΦdp reconstruction. The filtered 
differential phase is estimated as 

STEP 4 - Kdp retrieval (final guess). The 
final estimation of the specific 
differential phase Kdp is then obtained 
as range derivative of the reconstructed 
Φdp.

dssK dpdp )(2 '
∫=Φ

STEP 4

STEP 3

STEP 2

�

σ(Kdp) is about 0.05 deg km
for σ(Φdp) = 3 deg and  L=7 km
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σ(Kdp) can be further 
reduced by iterating steps 3-
4 :

ITERATION
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Heavy Rain
Large Drops

Data processing chain: 
attenuation correction
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Attenuation correction based on Φdp
measurements: APDPAPDP (Vulpiani et al. 2008)

• Linear relationship: αhh,dp= γhh,dp Kdp [dB/km]

•  γhh,dp depend on drop size, shape and 
tempertaure

•  γhh,dp are optimized through an iterative 
hydrometeors classification 

Kdp [deg/km]

α

Medium Rain
Light Rain
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AlgorithmsAlgorithms

• RMP(ff(Z)): Marshall and Palmer (1948) 

with ff(Z)= VPRVPR(VMIVMI(Z))

• RBC01(gg(KDP)): Bringi and Chandrasekar 

(2001)

• RBR01(gg(KDP)): Bringi et al. (2011)

with gg(KDP)= LBMLBM(KDP)
Z or KZ or KZ or KZ or KZ or KZ or KZ or KZ or Kdpdpdpdpdpdpdpdp profilesprofilesprofilesprofilesprofilesprofilesprofilesprofiles

Rainfall Estimation Rainfall Estimation 

�VPR retrieved for each volume scan

�VPK retrieved on a daily basis

with gg(KDP)= LBMLBM(KDP)

• RNN(Z,Kdp), neural networks

Radar Gauge ComparisonRadar Gauge Comparison

• Best-matching radar bins 

within 25 km2 area around gauge position

are compared with gauges 

(Silvestro et al., 2008)

Performance analysisPerformance analysis

• BIAS: RG/RR, 

• FSE: RMSE/<RG>

• Correlation coefficient

Vertical section of radar volumeVertical section of radar volumeVertical section of radar volumeVertical section of radar volumeVertical section of radar volumeVertical section of radar volumeVertical section of radar volumeVertical section of radar volume

RRRRRRRRRRRRRRRR

LBMLBM
VMI

Range distance [km]



7th European Radar Conference, Toulouse, 24-29 June 2012

Neural Network: RNN(Z,Kdp)

Architecture

Multi Layer Perceptron (MLP) composed by

�6 nodes at the 1° hidden layer

�4 nodes at the 2° hidden layer

Training
�The network is trained using supervised learning, with a training set D = (xi, ti) of known 
inputs and targets. Weights and biases are iteratively adjusted in order to minimize the network 
performance function, which normally is the sum square error.

Training data set
Simulations by means of the T-matrix scattering model. 

Assumptions:

Axis ratio: Brandes et al. (2002) 

•Temperature: T=10 °C

•RSD shape: N(D)=Nw (D/D0)µ exp(-(3.67+µ)D/D0) 

with 0.5<=D0<=3.5 mm, 2<=log(Nw)<=5, -1<=µ<=5

•Canting angle: Gaussian distribution mean=0 deg, std=10deg

performance function, which normally is the sum square error.
�The minimization is based on repeated evaluation of the gradient of the performance function 
using back-propagation
�Regularization by input perturbation + considering an additional term within the objective 
function,e.g. (1-γ)EW where EW is the sum of squares of the network’s weights and biases.
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Data set: 12 events

21 june 2009 22 oct. 2009

9 nov. 2010 21 june 2009
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Results: range dependency

R(Z)

RBC01(Kdp)

24-h 
cumulated 
rainfall

RBR11(Kdp)

RNN(Z,Kdp)
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Results: 
spatially-averaged cumulated rainfall 

Z & K are Z & Kdp are 
projected at 
ground 
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Results: Mean Bias  

Threshold on 
the estimated 
1-h rainfall: 1-h rainfall: 

Th= 0.2 mm



7th European Radar Conference, Toulouse, 24-29 June 2012

Conclusions

�Kdp can be used successfully used for operational rainfall
estimation in complex terrain conditions, it being immune to 
partial PBB and attenuation

�Kdp-based algs perform relatively well even at far ranges

�In about 70 % of the cases the ground-projection of Kdp by �In about 70 % of the cases the ground-projection of Kdp by 
means Vertical Profile of Kdp (VPK) improved the rainfall
estimation reducing the ice-contamination effects

�The neural network algorithm RNN(Z,Kdp) generally
outperformed the considered Kdp-based rainfall algorithm
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“The important thing is not to stop questioning. 
Curiosity has its own reason for existing.”

Questions?

Curiosity has its own reason for existing.”
- Albert Einstein



Thank you Andrea!!
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Error scores

2010/09/11 FSE 0.60 0.53 0.58 0.48

CC 0.75 0.70 0.66 0.74

Bias 2.66 1.98 2.14 1.75

2010/11/01 FSE 0.70 0.42 0.47 0.38

CC 0.18 0.62 0.56 0.69

Bias 2.59 1.18 1.27 1.11

Date Score R(Z) RBC01(Kdp) RBR11(Kdp) RNN(Z, Kdp)

2009/06/01

FSE 0.54 0.14 0.18 0.10

CC 0.71 0.97 0.95 0.98

Bias 2.33 1.03 1.06 1.01

2009/06/21

FSE 0.43 0.42 0.49 0.34

CC 0.89 0.88 0.84 0.93

Bias 1.67 1.16 1.22 1.08

Date Score R(Z) RBC01(Kdp) RBR11(Kdp) RNN(Z, Kdp)

2010/11/02 FSE 0.76 0.38 0.45 0.34

CC 0.47 0.65 0.50 0.73

Bias 3.58 1.37 1.50 1.30

2010/11/09 FSE 0.70 0.43 0.47 0.38

CC 0.02 0.38 0.31 0.46

Bias 3.22 1.45 1.57 1.32

2011/03/01 FSE 0.79 0.34 0.35 0.34

CC 0.31 0.63 0.59 0.63

Bias 4.06 1.21 1.29 1.20

2011/03/02 FSE 0.67 0.34 0.38 0.30

CC 0.53 0.56 0.49 0.65

Bias 3.30 1.31 1.41 1.25

Bias

2009/09/21

FSE 0.53 0.11 0.21 0.08

CC 0.82 0.99 0.98 0.99

Bias 1.56 1.01 1.04 0.99

2009/10/22 FSE 0.72 0.24 0.28 0.21

CC 0.32 0.89 0.86 0.91

Bias 2.78 1.11 1.17 1.04

2009/10/23 FSE 0.49 0.17 0.20 0.17

CC 0.54 0.91 0.88 0.91

Bias 1.95 1.07 1.10 1.04

2010/09/10 FSE 0.57 0.42 0.47 0.34

CC 0.60 0.73 0.67 0.80

Bias 2.30 1.65 1.79 1.34
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Z

R
Kdp

R
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Artificial Neural Networks

What a NN is?
Biological model of human brain able to learn from 

experience ����A Powerful inversion technique

An artificial neural network is a non-linear parameterized mapping from an 
input x to an output y=NN(x; w, M) input x to an output y=NN(x; w, M) 

where    w=vector of parameters relating the input x to the output y, 
M=functional form of the mapping (i.e., the architecture of the net). 

The multi-layer perceptron architecture (MLP), considered here, is a mapping 
model composed of several layers of parallel processors. 

It has been theoretically proven that one-hidden layer MLP networks may 
represent any non-linear continuous function (Haykin, 1995), while a two-
hidden layer MLP may approximate any function to any degree of non-
linearity taking also into account discontinuities (Sontag, 1992).



NN Training
� The network is trained using supervised learning, with a 

training set D = (xi, ti) of inputs and targets. During training 
the weights and biases are iteratively adjusted in order to 
minimize the so called network performance function, which 
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Artificial Neural Networks

minimize the so called network performance function, which 
normally is the sum squared error:

� The minimization is based on repeated evaluation of the 
gradient of the performance function using back-
propagation, which involves performing computations 
backwards through the network
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Neural Network Optimization: 
minimization and regularization techniques

MINIMIZATION
� The performance of the algorithm is very sensitive to the proper setting of the learning rate. For 

this reason, a back propagation training with an adaptive learning rate is crucial. Battiti’s 
“bold driver” technique has been implemented in this work. It can be summarized as follows.

First, the initial network output and error are computed for a given value of  η0. If the performance 
function decreases, the learning rate is then increased by a factor ρ (=1.1). On the contrary, if ED
increases this is taken as an indication that the step made was too large and  η0 is decreased by a 
factor σ(=0.7), the last change is cancelled, and the search process is continued. The process of 
reduction is repeated until a step is found that decreases the performance function.

� Gradient descent may get stuck in local minima of the performance function. The best strategy 
in this case is to orient the search towards the local minima, but the form of the error function 
may be such that the gradient does not point in this direction. Following the gradient direction 
can lead to large oscillations of the search process. The problem can be overcome by including a 
momentum term in the weight updates. Momentum can be added to back propagation learning 
by making weight changes equal to the sum of a fraction of the last weight change and the new 
change suggested by the back propagation rule

REGULARIZATION

� The procedure to improve generalization, called regularization, adds an additional term to the 
objective function which becomes
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