

C-Band dual polarimetric observations of snow events in southern Canada.

<u>S. Boodoo¹</u>, D. Hudak¹, N. Donaldson¹, M. Leduc¹, L. Bliven²

¹Environment Canada, 4905 Dufferin St.,Downsview, Ontario, Canada, M3H-5T4. ²NASA Goddard Space Flight Center, Greenbelt, Maryland USA.

Snowfall generally of two types: synoptic and lake effect.

DATA

- Low level PPI scans Z, Z_{DR} , ρ_{HV} and K_{DP} at 10 minute cycles.
- 0.25km range resolution, 0.5° azimuthal resolution.
- Ground instrumentation located at Centre for Atmospheric Research (CARE) 34 km 331° from radar for meteorological observations.
- Precipitation Occurrence Sensor System (POSS) provided rate reference and type at CARE.

Lake effect systems(Z - animation).

• Lake effect off Georgian Bay and Lake Huron.

- NW flows off Georgian Bay and Lake Huron often develops after a synoptic low passage.
- Related to wind speed, vertical wind shear, and lake shape.
- Dependant on temperature difference between 850mb and lake surface. T_{diff} >13°C.
- Single or Multiple bands, parallel to long lake axis, or wind parallel rolls across the short lake axis.

Lake effect systems(Z_{DR} - animation).

• Lake effect off Georgian Bay and Lake Huron.

Polarimetric characteristics for specific examples.

- 1) Synoptic event Feb 02, 2011. 1010UTC.
- 2) Lake effect off Georgian Bay, Jan 18, 2012. 12UTC.
- 3) Lake effect off Lake Ontario, Feb. 12 2008. 15UTC.

1) 0.2° PPI's of Z, Z_{DR} , ρ_{HV} and K_{DP} .

Z – Z_{DR} scatter-plot (Synoptic).

Arbitrary cross-sections of Z, $Z_{DR},\,\rho_{HV}$ and $K_{DP}.$

02 Feb 2011

2) 0.3° PPI's of Z, Z_{DR} , ρ_{HV} and K_{DP} **18 Jan. 2012 12UTC.**

• Highest reflectivity is at the middle of the band.

- Corresponds with low Z_{DR} .
- Bands parallel to wind and long axis of lake.

• Bands can extend to over 80km inland.

Z – Z_{DR} scatter-plot (Lake effect off Georgian Bay).

3) Lake effect example off Lake Ontario Feb. 12 2008 15UTC.

- Artic high north of lake.
- Shallow convection due to capping subsidence inversion.
- Surface temperature was ~-10°C.
- Band is wider compared to previous case.

Z – Z_{DR} scatter-plot (Lake effect off Lake Ontario).

Large distribution of particles with varying shapes and sizes.

Systematic inverse relation between Z and Z_{DR} .

Arbitrary cross-sections of Z.

Lake effect of Georgian Bay 18 Jan. 2012 12UTC. Lake effect of Lake Ontario Feb. 12 2008 15UTC.

Georgian Bay 18 Jan. 2012 12UTC.

Z, Z_{DR} time series at point location. Synoptic and Lake effect.

Series from 0.2° elevation PPI of Z and ZDR. 3x3 range/azimuth window averages over CARE.

Lake effect off Georgian Bay 18 Jan. 2012. $(P)_{Z}$ $(P)_{U}$ $(P)_{U}$

- Z ranged from 10-30dBZ.
- Z_{DR} ranged from 0-1dB.
- From around 2100Z, low moved out of area, winds shifted to NW, lake effect flurries started.
- Band was 20km wide.
- Changes in wind direction changes intensity over CARE.
- Z ranges from -10-20dBZ.
- Z_{DR} from 0-1dB.
- Inverse relationship with Z and Z_{DR} 10-14Z.

Synoptic Feb. 02 2011.

Summary.

 Synoptic and lake effect are main winter systems over the Great Lakes region of Canada.

Lake effect systems:- 1) Northwest flows off Georgian Bay and Lake Huron. 2) Easterly flows off Lake Ontario.

 Z and Z_{DR} differences between synoptic and lake effect systems. Synoptic :- Z is mostly independent of Z_{DR}. Lake effect :- Systematic inverse relation between Z and Z_{DR}.

 Differences between lake effect systems:-Squalls off Lake Ontario - elliptical in shape

 short extent inland.

Squalls from NW flows - narrower, multi-banded

 extends far inland.

Both are relatively shallow ~1-3km in vertical extent.

• POSS provided insights on particle types to characterize the radar observables for the events.

Future work.

- Further investigate the POSS modal output, and the precipitation rates. Use this information as reference for developing radar snow-rate algorithm suited to the event type.
- With recent GPM Cold-season Precipitation Experiment (GCPEx) (<u>http://pmm.nasa.gov/GCPEx</u>) at CARE, use the supplemental ground information from particle video imager (PVI), Parsivel, 2DVD disdrometer and manual gauge readings of event snow water equivalent accumulation, to support the development of such multi-parameter snowfall estimation algorithms for differing snow types.

Merci / Thank You!