

Radar Quality Control and Quantitative Precipitation Estimation Intercomparison Project Status

Paul Joe

Environment Canada

Commission of Instruments, Methods and Observations (CIMO)

Upper Air and Remote Sensing Technologies (UA&RST)

Radar DQ is not just about QPE

- Nowcasting
 - Non-precipitating echoes/insects
 - Data Classification
- Radar Data for NWP
 - Reflectivity, radial velocity assimilation
 - VAD Winds

Segmenting the DQ Process

First Intercomparison will assess artifact correction algorithms

Doppler Filtering is popular

Fuzzy Logic Technique for Removal of Anomalous Propagation

NONQC QC

Liping Liu, CMA

CAPPI is a classic technique to overcome ground clutter

Iso-range "Variance" as an intercomparison Metric

Variance Metric

Similar to before except area of partial blockage contributes to lots of scatter Algorithms that are able to infill data should reduce the variance in the scatter!

What length of data sets are needed?

Highly Variable

More uniform, smoother, more continuous

1. Uniform weather

2.Doppler filter can filter weak weather

The data accumulates to uniform pattern with an area of blockage. Widespread snow. Urban (skyscrapers) and small terrain clutter. IRIS formatted data. 24 elevation angles. Doppler (dBZT, dBZc, Vr, SPW) at low levels. Range res = 1 km or 0.5 km. Az res = 1 or 0.5 degrees.

BSCAN of Z accumulation with no filtering, Doppler and CAPPI

Probability Density Function of Reflectivity as a function of range

Spread of PDF (at constant range) for various cases and techniques...

Case	Technique							
	RAW	CAPPI15	CAPPI30	Precip-ET	DOPPLER	REC_AP	REC_SC	CMA_AP
BOM_seaClutter		7.3	8.1		8.5	8.7	8.5	
Saudi_20020517		23.6	20.3		26	7.3	26.4	
Saudi_20020527		18.8	15.3		21.2	10	20	
TJ_bigAP_20060815_nonQC		8.2	7.2		8.7	7	9.4	
TJ_mix_20070825_nonQC		8.4	8.8		8.2	8.5	8.8	7.2
TJ_mix_20070825_QC		7.5	7.9		7.2	7.9	8.1	
VVO_zeroNotch_snow	7.3	7.1	5.6		6.7	6.7	6.7	
WKR_cnTower_Snow_2011	11.5	10.3	8.4	7.4	9.0	10.3	10.6	
WYR_uniform_blockage_2010	9.3	9.4	8.1	6	8.8	8.6	8.8	
XLA_uniform_20100101_dop	5.9	4.4	3.1	3.2	4.6	4.4	4.5	

Status and Acknowledgements

