

# Comparison of gauge-radar merging methods for obtaining UK rainfall.

<u>Alan J Hewitt</u>, Selena Georgiou, Shona Hogg, Martyn Sunter, Nicolas Gaussiat



Comparison of gauge-radar merging methods for obtaining UK rainfall.

#### **Table of Contents**

- grid2grid 1km<sup>2</sup> river flow product
- Gauge QC work
- Merging Schemes
- Variograms
- Results

© Crown copyright Met Office

# grid2grid river flow model

G2G Combines real-time measured rainfall with forecast product.





We also want to produce a national rainfall product and verify NWP rainfall in real time.



- Met Office
  Initial merging analysis hampered by over reporting "rogue gauges", which had a disproportionate effect on the rainfall field.
  - Need to identify badly performing gauges.
  - QC combines automated real-time analysis with manual "rogue gauge" list.
  - It is crucial that genuine heavy rainfall is not filtered out by the QC.

## Range QC check

60 minute values <= 10mm OK >10mm; <=40mm ? > 40mm Suspect

## + isolated rain QC (a sudden burst is statistically rare)



## + Spatial QC check (does gauge stand out from neighbours)



+ tip-time analysis (used to identify double tips and partially blocked gauges)



- How long does they take to run?
- How do they perform in different weather patterns?
- Cross-validation is used to analyse the different methods. This involves removing a sub-set of gauges from the merging scheme to validate against.
- Binary statistics (CSI,PSS), are calculated from a 2×2 contingency table with rainfall above a set threshold.
- Continuous statistics (RMSF, RMSE) are also obtained with cross-validation gauge above set threshold.



# Merging scheme set-up

- Multi-quadric surface fitting (MQ) based on Cole+Moore (2008). A single matrix inversion (No. gauges × No. gauges), so surface field knows whole domain.
- Large MQ matrix sometimes fails to invert.
- Block Kriging used for Gauge only, KRE (based on Ehret 2008) and KED. A matrix is inverted for each 1km<sup>2</sup> grid square, to save processing time only nearest ≈16 gauges used.
- Kriging can be run with spherical or nonparametric (Velasco-Forero 2009) variograms.

Non-parametric variograms Spherical Variogram may improve merged product but...

•Take longer to process

•Work better on smaller temporal and spatial scales.



Non-parametric variogram (courtesy of Velasco-Forero)





| X-Validation -> Abov<br>Merged V |              | ove                   | Below                    |       | al                       | Binary threshold        |                       | shold                |  |
|----------------------------------|--------------|-----------------------|--------------------------|-------|--------------------------|-------------------------|-----------------------|----------------------|--|
| Above                            | A (Hit)      |                       | B (False<br>Alarm)       | A + B |                          | 4mm/hr Aug 2011         |                       |                      |  |
| Below                            | C<br>(Miss)  |                       | D (Correct<br>Rejection) | C + D |                          | (x-val above threshold) |                       |                      |  |
| Total                            | A+0          | 2                     | B+D A+B+C<br>D=n         |       | 3+C+<br>า                | fB = (a+b)/(a+c)        |                       |                      |  |
|                                  |              |                       |                          |       | Critical<br>Sucess Index |                         | Peirce<br>Skill Score | Frequency<br>BIAS fB |  |
|                                  | Radar Only   |                       |                          | 0.200 |                          | 0.273                   | 0.825                 |                      |  |
|                                  |              | KED                   |                          |       | 0.569                    |                         | 0.634                 | 0.768                |  |
|                                  |              | KRE (Ehret)           |                          |       | 0.553                    |                         | 0.668                 | 0.914                |  |
|                                  | MultiQuadric |                       |                          | 0.766 |                          | 0.814                   | 0.886                 |                      |  |
|                                  |              | Gauge Only<br>Kriging |                          |       | 0.490                    |                         | 0.517                 | 0.581                |  |
|                                  |              | KED (non-p)           |                          |       | 0.911                    |                         | 0.941                 | 0.976                |  |



## Continuous threshold 4mm/hr RMSF is resistant to outliers

#### RMSE is not resistant to outliers

|                | RMSE | RMSF  | MAE  | Pearson correlation |
|----------------|------|-------|------|---------------------|
| Radar<br>Only  | 2.98 | 0.426 | 2.22 | 0.201               |
| KED            | 1.13 | 0.094 | 0.69 | 0.878               |
| KRE            | 1.43 | 0.153 | 0.84 | 0.803               |
| MQ             | 2.62 | 0.583 | 1.72 | 0.590               |
| Gauge<br>Only  | 1.27 | 0.106 | 0.78 | 0.853               |
| KED<br>(non-P) | 0.83 | 0.086 | 0.33 | 0.924               |



• Radar – n/a

)

- MQ ≈ seconds
- Gauge only kriging (spherical) ≈ 3 minutes
- KRE (spherical) ≈ 3 minutes
- KED (spherical) ≈ 5 minutes
- KED (nonP) ≈ 12 minutes



### **Questions?**

S.J.Cole and R.J.Moore (2008) - MQ U.Ehret et al (2008) – KRE C.A.Velasco-Forero (2009) – KED+nonP I.T.Jolliffe + D.B.Stephenson – Statistics

## With/out gauge QC 2mm/hr threshold

|                   | CSI    | fB<br>binary | RMSE       | RMSF   | MAE    | Pearson |
|-------------------|--------|--------------|------------|--------|--------|---------|
|                   | binary |              | continuous | (cont) | (cont) | (cont)  |
| MQ<br>with QC     | 0.768  | 0.847        | 0.82       | 0.178  | 0.41   | 0.943   |
| MQ<br>no QC       | 0.371  | 1.253        | 4.19       | 0.465  | 2.51   | 0.297   |
| KED(N)<br>with QC | 0.908  | 0.928        | 0.22       | 0.029  | 0.08   | 0.994   |
| KED(N)<br>no QC   | 0.484  | 0.755        | 2.39       | 0.386  | 1.49   | 0.408   |