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SUMMARY

Non-axysimmetric drop oscillations and their
impact on Depolarization ratio 2 CDR and LDR
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MMCR observations of rain

Conclusions



The physics behind the signature:
Non-axisymmetric oscillations of
raindrops



® Non-axisymmetric oscillations of raindrops

° do cause depolarization even at zenith/nadir

D =1.8 mm °

raindrop

Ku band
13.8 GHz at nadir

LDR, dB
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At zenith/nadir viewing, raindrops exhibit azimuth symmetry - 2 degrees of freedom
usually encapsulated in Reflectivity and Depolarization Ratio
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T-matrix simulations of spheroids

We used Mishchenko T-matrix code to compute the Muller matrix of
monodispersed randomly oriented spheroids (prolate or oblate yield similar results)

D=2mm a/b=0.83 D=6mm a/b=0.6
16533 0 0 0 [ 04825 0 0 0
| 0 16338 0 0 | 0 04520 0 0
0 0 -16338 0 e 0 0 -04520 0
0 0 0 ~1.6144 | 0 0 0 -0.4214
CDR =-19.23 dB CDR=-11.71dB
LDR = -22.27 dB LDR = -14.86 dB

Millimeter waves are very sensitive to depolarization from drop oscillations !!!

If the antenna has good isolation (e.g. -35 dB) the dynamic range is significant,
and quantitative retrieval could be attempted !




MMCR observations of rain



N

MMCR at SGP (Ka band) = operates in a number of different modes:

Boundary Layer mode
Cirrus mode
General mode

An attenuator is switched on at the
Precipitation mode 5 radar front-end to prevent saturation in rain

Main channel These channels are used to compute CDR.
Weak channel Mode 5 is very similar to mode 3



Case 1: April 29t 2006
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The CDR flares we just saw are caused by saturation, not by raindrop oscillations !!

Scatterplot- Rain

Scatterplot- Rain
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The hockey-stick shape disappears when the precipitation mode is used:
The flares in Depolarization Ratio are due to main channel saturation !

The difference in the intercept in the two graphs above permits to compute
the calibration mismatch of the attenuator at the front-end: approximately 5 dBZ
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SATURATION FLARES

* Cloud radars are designed to detect clouds,
generally, their dynamic range is between -60 dBZ
and +20 dBZ

* |nlight (20 dBZ) and moderate (30 dBZ) rain, the
main channel saturates....

* This induces spurious DR (Depolarization Ratio)
flares at close ranges from the antenna.



Rain with Z > 20 dBZ

IR

Antenna

Because of antenna coupling, Z_ is proportional to Z_,

Saturation level

I

Noise floor

Zco—Zcx ~ 20dBZ

Difference between main and
weak channel is approx. 20 dB

Main channel is saturated, weak channel still accepts incoming power

DR = Zweak/Zmain soars !!!



Depolarization Ratio signatures of
non-axisymmetric drop oscillations

Case 2: May 7th 2008



Case 1: April 29t 2006
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If the main channel is not saturated, CDR correlates with the rain rate (below) and the
maximum drop diameter (above). Height is 650 m

CDR vs. Max Drop Diametsr fHeight = 650 m
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CONCLUSIONS

e Saturation flares may appear in DR
measurements in light/moderate rain

e |f the precipitation mode is used in the
computation of CDR, then a correlation between
CDR and rain rate and CDR and maximum drop
diameter can be observed.

e Scatterplots of main and weak channel
reflectivity can be used to (fairly accurately)
calibrate the attenuator in the radar front-end



FUTURE WORK

e Attempt quantitative precipitation estimation.

e Reconstruction of main channel reflectivity
from weak channel reflectivity in the case of
strong scatterers and quantify the uncertainty.



Thank You !
Questions ?

mgalletti@bnl.gov
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