

MEASUREMENTS OF A NETWORK OF MOBILE RADARS DURING THE EXPERIMENTAL CAMPAIGN OF THE HYDRORAD PROJECT

John Kalogiros¹, Anagnostou M.^{1,2}, Anagnostou E.³, Marzano F.S.^{2,4}, Picciotti E.⁵, Cinque G.⁵, Montopoli M.⁴, Bernardini L.⁵, Volpi A.⁶, Telleschi A.⁶

¹IERSD, National Observatory of Athens, Greece, e-mail: jkalog@noa.gr
²Department of Information Engineering, Sapienza University of Rome, Italy
³University of Connecticut, Storrs, Connecticut, USA
⁴CETEMPS, University of L'Aquila, L'Aquila, Italy
⁵HIMET, Strada Statale 17 Ovest 36, L'Aquila, Italy
⁶ELDES, Via di Porto 2/b, Firenze, Italy

What is HYDRORAD

HYDRORAD is the name of the project, co-funded by European Commission under Seventh Framework Programme, which lasted two years and three months and ended on November 2011.

HYDRORAD Project Objective

The main objective of the HYDRORAD project is the development of an innovative *integrated decision support tool* for weather monitoring and hydro-meteorological applications.

The integrated system tool is based on an polarimetric low cost **X**-**band mini-radar** network, an useful **radar products generator** and a **hydro-meteorological forecasting modeling** able to ingest precipitation data and mini-radar products.

See Poster session Group 2: NET 306 Picciotti et.al for more detail

Test system in Moldova campaign

The whole integrated system was tested on **Moldova Operational Field (MOF) campaign** took place during autumn 2011 in Moldova.

During the two months long of MOF campaign, three miniradar systems and the decision support tool have been successfully tested and compared against a state-of-the-art radar (X-POL) and against in situ weather station measurements (one video disdrometer, one Doppler flow meter and several rain gauges).

Mini-radar and XPol radar with disdrometer and raingauges

Miniradar Characteristics	
Frequency	9.41 GHz
Antenna Gain	35 dB
Antenna Type	Offset Cassegrain
Maximum Range	120 km
Beamwidth	3.0
Peak Power	25 Kw
Radome	YES
Dual Polarization	YES
Measurables	$Z Z_{DR}$ V, $\Phi_{DP} \rho_{HV}$

- 9.37 GHz H/V simultaneous transmission, Doppler, 60 kW peak power
- NCAR's integrated acquisition cards (PIRAQ)
- 0.9° beam width, variable pulse length, 80 km typical range
- 1 and 0.3 dB noise in Z_h and Z_{dr} and 3° noise in Φ_{dp} (0.3 ° km⁻¹ in K_{dp})

- 3 mini-radars R1, R2, R3
- •XPol mobile radar RD (benchmark)
- •2D-video disdrometer (microphysics, radar observables)
- •6 sites along river with a pair raingauges each
- Doppler flow meter downstream (hydrological modeling)

•Differential reflectivity $Z_{dr} = Z_h - Z_v$

- •Differential phase shift Φ_{dp} , $K_{dp}=2d\Phi_{dp}/dr$ (3 km length)
- Co-polar correlation coefficient ρ_{hv}
- Two rain events: 8-9/9/11 convective, 8-9/10/11 stratiform

Radar data main processing

- Miniradar calibration using X-Pol as a reference
- Rain path attenuation correction (significant at X-band) of Z_h , Z_{dr} and correction of backscatter effects on Φ_{dp}
- Melting layer (bright band) detection and correction in the melting layer and the snow region above it (Vertical Profile of reflectivity or rainfall estimators)
- Application of polarimetric algorithms (Z_h, Z_{dr}, K_{dp}) for rainfall rate and rain microphysics (Drop Size Distribution parameters) estimation

Radar attenuation correction

Melting layer-Vertical profile of reflectivity

X-band rainfall rate estimation

• Classic Z-R estimator:

 $R=3.36 \times 10^{-2} Z_h^{0.58}$

based on historic XPol and disdrometer data

Polarimetric estimators:

 $R_{p1} = 1.305 \times 10^{-3} N_w (Z_h/N_w)^{0.58} N_w = N_w (Z_h, Z_{dr}, K_{dp})$

 $R_{p2}=0.8106F_{R}(\mu)N_{w}D_{0}^{4.67}f_{R}(D_{0}), D_{0}=D_{0}(Z_{h},Z_{dr},K_{dp}), \mu=\mu(D_{0})$

from scattering simulations (5% max. parameterization error)

 N_{w}, D_{0}, μ parameters of Gamma Drop Size Distribution

• 1.5° elevation angle data was used from the radars

Radar accumulated rainfall maps

Interpolation on a common grid with 1 km resolution

8

6

Accumulated rainfall comparison with XPol

Conclusions-Further work

- Mini-radars measure accurately the spatial variability of rain, and new polarimetric algorithms (attenuation correction, rain microphysics) were applied satisfactorily
- Despite their wider antenna beam, they still provide good performances within an useful range, for this type of radar, of ≈40-50Km.
- They provide a reliable low cost solution for weather and flood monitoring in small scales
- More data are required to evaluate the performance

ACKNOWLEDGEMENTS

This research was funded from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n 232156 within FP7-SME-2008-1.

.

Reflectivity images taken from MOF

A reflectivity map composite from the three radar sites

Sample Phase measurement

Differential propagation phase shift map taken from Straseni site at 60 km range (right) and range profile of the measurements along a given direction (azim. 333° clockwise from North direction and elev. 2.5 deg) As expected the Φ dp increase in the rain-filled area, the corresponding average Kdp value is about 0.5° km-1.

Accumulated rain

Accumulated rain (3h and 6 h) from Horesty site: the effect of The effect of beam blockage in south direction is quite evident