Usefulness of radar QPE for Mediterranean flash-flood ensemble forecasting

B. Vincendon, V. Ducrocq, O. Nuissier, B. Vié
GAME/CNRM (Météo-France, CNRS)
Toulouse, France

beatrice.vincendon@meteo.fr
HYdrological cycle in the Mediterranean Experiment

- **Aim**: understanding of the water cycle with emphases on intense events
- « Time-nested » observation strategy:

First HYMEX Special Observation Period (SOP):
- **North-Western Mediterranean**
- from **5 September to 6 November 2012**
- dedicated to **Heavy Precipitation Events and FF**.

- Additional observing systems deployed
- Real time meteorological and hydrological forecasting
- *e.g.* for FF: **ISBA-TOPMODEL**

![Map of Europe](image)

ERAD 2012 -2-
Accumulated rainfall (radar QPE) from 3 Nov. 2011 to 8 Nov. 2011

Uncertainty affects QPF even for high resolution NWP

Accumulated rainfall (radar QPE) from 3 Nov. 2011 to 8 Nov. 2011

METEOROLOGICAL FORCING

- **Precipitation**
 - AROME* QPF
 - Radar QPE

ISBA-TOPMODEL*

*Bouilloud et al, 2010; Vincendon et al, 2010

Observation

- Simulation driven by radar QPE
- Forecast with deterministic QPF

Discharges from 3 Nov. 2011 @ 00UTC to 7 Nov. 2011 @ 00UTC

*(Seity et al, 2011)
Assessment of high resolution QPF errors

- Climatology of differences between QPF and radar QPE
- Double penalty problem ⇒ object-oriented climatology of errors
- Objects defined according to thresholds in mm/h in the QPF and QPE fields

- PDF of **amplitude** and **location** errors
- **Structure-Amplitude-Location** method
 - measure of the QPF quality
 - no need to match objects one to one

- **S** : difference in **size, shape and gradient** of the rainy objects
- **A** : normalized difference of **averaged precipitation** values
- **L** = **L1** + **L2**
 - **L1** : global **shift** between QPE and QPF
 - **L2** : difference in relative positioning of **objects** in QPE and QPF

(Wernli et al, 2008)
SAL diagram

- **L component**
 - [0;0,1]
 - [0,1;0,2]
 - [0,2;0,5]
 - [0,5;1]
 - [1,2]

- **A component**
 - Too much rain in QPF
 - Too small objects and/or too large a gradient in QPF
 - Not enough rain in QPF
 - Convective rainfall observed

- **S component**
 - Too large objects and/or too small a gradient in QPF
 - Stratiform rainfall observed
 - Convective rainfall forecasted
 - Stratiform rainfall forecasted

- **False alarm**
- **Good forecast**

(Wernli et al, 2008)
Assessment of AROME QPF

- 1-h QPF vs 1-h QPE from Météo-France radar composite
- Days with significant rain from Sept. 2008 to Dec. 2011

A median value close to 0

⇒ No systematic bias

L component

- 70% of the cases with a location error < 50 km

Valuable information in AROME QPF

SAL diagram for objects with 1-h rain over 2mm
Streamflow ensembles with ISBA-TOPMODEL

Deterministic AROME

Perturbation generation*

PDF of amplitude and location errors

30 members

Single streamflow forecast

30 members streamflow ensemble

8 members streamflow ensemble

AROME Ensemble Prediction System (EPS)*

ISBA-TOPMODEL

(*Vincendon et al., 2011)

(*Vié et al., 2011)
Real time FF forecasting chain within HYMEX SOP

Daily forecast:

- $T_0 =$ Day D
- $T_0 + 36$ h
- Day D+1 à 00utc
- à 00utc

Forecasts with

ISBA-TOPMODEL driven by:

- Deterministic AROME
- AROME + Perturbation

30 members

AROME EPS

8 members

AROME + Perturbation:

RPSS ∼ 0.23

Streamflow ensembles for Gardons river:

3 nov. 2011 @ 02UTC - 4 nov. 2011 @ 04UTC

AROME EPS:

RPSS ∼ 0.35

Observation

Simulation driven by radar QPE

Interquartile range of the ensemble

Ensemble median

Forecast with deterministic QPF
Conclusions and future work

- Usefulness of radar QPE for FF forecasting
 - To document the uncertainty on QPF
 - Method of perturbation of QPF to take benefit from valuable information of AROME deterministic forecast
 - Streamflow ensemble at reduced numerical cost

- Implemented in real-time for HYMEX SOP: http://sop.hymex.org
Bouilloud et al, 2010:

Vié et al, 2011:

Vincendon et al, 2010:

Vincendon et al, 2011:

Wernli et al, 2008:
Point-to-point assessment of QPF values

- A: characterizes how different are domain-averaged precipitation values

$$A = 2 \frac{R_{mod} - R_{obs}}{R_{mod} + R_{obs}}$$

(Wernli et al, 2008)
Point-to-point assessment of QPF values

- $L = L_1 + L_2$

- L_1 characterizes the global shift between QPE and QPF.

 $L_1 = \left| x(R_{\text{mod}}) - x(R_{\text{obs}}) \right|$

 - Barycentre of the QPE field among D
 - Maximal distance among D

- L_2 characterizes the spatial precipitation distribution inside the domain.

 $L_2 = 2 \left| r_{\text{mod}} - r_{\text{obs}} \right|$

 - Total number of objects
 - Barycentre of object n
 - Mean rainfall on object n

(Wernli et al, 2008)
Point-to-point assessment of QPF values

- S: characterizes the size of the rainy objects as well as the gradient

\[
V = \frac{\sum_{n=1}^{M} R_n \cdot V_n}{\sum_{n=1}^{M} R_n}
\]

\[
V_n = \frac{R_n}{R_n^{max}}
\]
Maximal rainfall on object \(n\)

\[
S = 2 \cdot \frac{V_{mod} - V_{obs}}{V_{mod} + V_{obs}}
\]

(Wernli et al, 2008)
Usefullness of radar QPE for FF forecasting?

FF simulation:

- Hydrological models dedicated to FF sensitive to rainfall (volume and spatial distribution)

⇒ Radar QPE = appropriate information

Use of radar QPE for:

- hydrological simulation
- hydrological models calibration

*Bouilloud et al, 2010; Vincendon et al, 2010
Uncertainty on FF simulations due to QPE

Rivers:
- Ardèche at Saint Martin (2240 km²)
- Cèze at Bagnols-sur-Cèze (1100 km²)
- Gardons at Ners (1090 km²)

Weather radars

Hydrological range (80 km)
Uncertainty on FF simulations due to QPE: November 2011 case

QPEs (mm) from 3rd nov. 2011 at 12UTC to 8 nov. 2011 at 00UTC

Discharges (m³.s⁻¹) from 3rd nov. 2011 at 12UTC to 8 nov. 2011 at 00UTC
Uncertainty on FF simulations due to QPE: November 2011 case

Several parameters

Discharges (m3.s$^{-1}$) from 3rd nov. 2011 at 12UTC to 8 nov. 2011 at 00UTC

Ardèche river

Gardons river

Several radar data
Sensitivity to radar QPE time step

Temporal frequency:
- 1h
- 15 minutes
- 05 minutes

Catchments with an area < 200 km²

Cumulated frequencies of nash efficiency (Prediflood project)

Catchments with an area > 600 km²
Quantification of AROME QPF error

- PDF of amplitude and location errors for object Or and Oc
- Amplitude errors: no systematic bias
- Location errors: < 50 km in 70% of cases

(Vincendon et al., NHESS, in revision)
Quantification of AROME QPF error

- AROME hourly QPF vs Météo-France radar hourly QPE
- Significant rainy events
- Object–based climatology of AROME QPF errors:
 - Rainy objects = Or
 - Convective objects = Oc

1h-radar QPE the 01 Nov. 2008 at 20UTC
1h-AROME QPF the 01 Nov. 2008 at 20UTC (AROME run start = 01/11/2008 analyse)
Quantification of AROME QPF error

SAL, ech06h (Objets se)

SAL, ech12h (Objets se)

SAL, ech18h (Objets se)

SAL, ech24h (Objets se)

SAL, ech30h (Objets se)

ERAD 2012 -21-
Perturbation generation method

AROME déterministic forecast

N members selected

PDF of location errors

Rainfall intensity of O_c $X f$

PDF of amplitude errors for O_r

Rainfall intensity of O_r $X f_c$

PDF of amplitude errors for O_c

N new fields

(Vincendon et al., NHESS, in revision)
Streamflow ensemble for 21-22 October 2008 event

(Vincendon et al., NHESS, in revision)

Ardèche

Cèze

Gardons

Discharges simulated from:
- 50 members of the ensemble
- deterministic AROME
- Ensemble median
- Interquartiles range

21 October 2008
22 October 2008
Streamflow ensemble for 01-02 November 2008 event

(Vincendon et al., *NHESS*, in revision)

- **Ardèche**
- **Cèze**
- **Gardons**

Discharges simulated from:
- 50 members of the ensemble
- Deterministic AROME
- Ensemble median

Observed discharge

Interquartiles range
Early verification

- RPSS ~ 0.35 mm/day on 24h-accumulated rainfall
 ⇒ Ensemble forecast > deterministic forecast

- Comparison to a research AROME EPS (Vié et al., 2010)
 ⇒ Close results

- Advantage of the perturbation method:
 - Reduced numerical cost
 - Lot of members
How do we simulate Mediterranean FF?

Surface scheme resolution

\[\Delta x = 1\text{km} / \Delta t = 15\text{min.} \]

ISBA-3L

Management of water and energy at surface / atmosphere interface

\[d_{i,t} = f(W_{I,t}) \]

\[W'_{I,t} = f(d'_{i,t}) \]

TOPMODEL

Lateral water transfer within the catchments

Routing Module

Water transfer along slopes and rivers

Catchments resolution

\[\delta x = 50\text{m} / \delta t = 1\text{h} \]

Runoff \(R \)

Deep drainage \(DR \)

ERAD 2012-26-
Real time FF forecasting chain within HYMEX SOP

Daily forecast:

- Spin-up period: Simulation with ISBA-TOPMODEL driven by:
 - Real time FF forecasting chain within HYMEX SOP
- Deterministic AROME

Forecasts with ISBA-TOPMODEL driven by:

- Radar QPE: RR1h
- AROME perturbated with 30 members
- AROME EPS with 8 members
- Climatology of amplitude and location errors

Usefullness of radar QPE in this framework?
- FF simulation
- QPF assessment