ERAD 2012	1. Introduction \bullet	3. Lightning vs. Z •	5. Comparison between both radars ••
25-29 June 2012, Toulouse, France	2. Data ●●	4. Lightning vs. microphysics •••	6. Conclusion •

Relationships between lightning activity and microphysics in thunderclouds:

The 6-7-8 sept. 2010 event observed by S and C-band radars in the Southeast of France (HyMeX SOP area)

<u>M. Buguet¹</u>, S. Coquillat¹, S. Soula¹, C. Barthe², M. Chong¹, O. Bousquet³, E. Defer⁴

¹Université de Toulouse, France ²Université de la Réunion, France ³Météo-France, France ⁴Observatoire de Paris, France

Contribution of lightning observation for improving numerical prediction of heavy precipitating events?

 \rightarrow data assimilation?

Cloud physics deduced from lightning observation?

 \rightarrow links between lightning and clouds characteristics (reflectivity, precipitating and non precipitating ice mass and mass fluxes)

• CG : EUCLID / METEORAGE

CG lightning criterion : 0.5 s - 5 km

• Radar reflectivity and wind speed (u,v,w) : 3D radar composite (Météo France)

Cartesian grid : 2.0 km × 2.0 km × 0.5 km

Domain : 400 km × 400 km × 12 km

- Temporal resolution : 15 minutes
- Microphysics and radar reflectivity : S-band (Nîmes) and C-band (Montclar) radars (Météo France)
 Dual-polarization Doppler radars with 15-minutes temporal resolution

ERAD 2012 1. Introduction • 3. Lightning vs. Z •

5. Comparison between both radars ••

25-29 June 2012, Toulouse, France

2. Data ••

4. Lightning vs. microphysics •••

6. Conclusion •

Definition of thunderstorm areas (TA)

used for studying the links between lightning and radar data (every 15 minutes)

Searching for Z > 40 dBZ

Conservation of surrounding pixels with $Z \ge 20 \text{ dBz}$

200 × 200 pixels

ERAD 2012	1. Introduction \bullet	3. Lightning vs. Z •	5. Comparison between both radars ••
25-29 June 2012, Toulouse, France	2. Data ••	4. Lightning vs. microphysics •••	6. Conclusion •

Relationship between CG flash rate and high radar reflectivity volume (precipitation/graupel)

In each TA and every 15 minutes :

- Determination of the volume of radar reflectivity > 40 dBZ
- Determination of the number of CG lightning flashes

Close relationship between both quantities

ERAD 2012	1. Introduction \bullet	3. Lightning vs. Z ●	5. Comparison between both radars ••
25-29 June 2012, Toulouse, France	2. Data ••	4. Lightning vs. microphysics •••	6. Conclusion •

Methodology for cloud ice mass determination

Precipitating Ice (PI) = graupel, hail, mixture of rain and hail above -5°C isotherm Non-Precipitating Ice (NPI) = ice crystals and dry snow above -5°C isotherm

Calculation of IWC for each microphysical point (Z-M relationships)
 IWC (n) = f(Z)

Interpolation of IWC for PI and NPI

1/d² weighted interpolation on the cartesian grid

Sphere 2 km in radius centered on the grid box

- PI or NPI mass in a grid box
 - IWC (i,j,z) \times grid box volume
- Total PI or NPI mass in TA

Sum of the ice mass values of all grid boxes in the considered TA

* Microphysical point : dominant microphysical type and corresponding reflectivity in an elementary radar volume (Météo France product)

Relationship between CG rate and precipitating ice mass in the TAs

Precipitating ice mass versus number of CG in each TA From 6 (15:00 UTC) to 7/09/2010 (23:45 UTC)

Comparison of ice masses deduced from Nîmes and Montclar : Ice masses calculated in each TA in the common area

25-29 June 2012, Toulouse, France

Thank you !

Hydrometeor Categories	Z(mm ⁶ m ⁻³) – M(g m ⁻³) Relationships	Authors and considered cases
Rain and large drop	LWC = 9.8 $10^{-4} \times Z^{0.696}$	Sekhon and Srivastava, 1971, Thunderstorm case
Wet snow	SWC = $0.0134 \times Z^{0.389}$	Sekhon and Srivastava, 1970 Data from several studies
Graupel	IWC = $0.0052 \times Z^{0.5}$	Heymsfield and Miller, 1988 6 thunderstorm cases (CCOPE)
Hail and mix hail & rain	IWC = $0.017 \times Z^{0.529}$	Heymsfield and Miller, 1988 6 thunderstorm cases (CCOPE)
Ice crystal and dry snow	IWC = 4.4 $10^{-5} \times Z^{0.71}$	Heymsfield and Palmer, 1986 Thunderstorm case (CCOPE)