

New weather-surveillance capabilities for NSSL's phased-array radar

Sebastián Torres, Ric Adams, Chris Curtis, Eddie Forren, Igor Ivić, David Priegnitz, John Thompson, and David Warde

CIMMS/The University of Oklahoma and National Severe Storms Laboratory/NOAA Norman, OK (USA)

> ERAD 2012 Toulouse, France 28 June, 2012

what do users want?

ERAD '12

*US National Weather Service survey on radar scanning strategy needs (2008),

fundamental trade-offs

Update Time

For example, if we want **faster updates**, we can't have <u>both</u> better **spatial coverage** and **better precision**.

mission: MPAR

the **NWRT PAR** is being exploited to **demonstrate improved** weather surveillance **capabilities**

focused observations **⇒faster** updates

it's all about cutting the "waste"!

ADAPTS

ADAPTS classifies beam positions as active or ina....

active beam positions meet one or more criteria

Elevation angle
 Significance
 Neighborhood

Adaptive DSP Algorithm for PAR Timely Scans

Real-time display of active beam positions

ADAPTS cuts the "waste"!

Radar scans active beam positions with short dwells

periodic vs. continuous surveillance

Periodic Full Scans

inactive beam positionsnot continuously scanned

- need periodic surveillance
 - a full scan runs every ~5 min
- delayed detection of developing storms
- beam positions at low-elevation angles **forced** to be active

Scanning strategy schedule: periodic surveillance

FULL	ADAPTS	ADAPTS	ADAPTS	ADAPTS	FULL	ADAPTS	
		t	imé				
	 Surveilla 	nce updat	e time 🛛				

Continuous Surveillance

inactive beam positions
 continuously scanned
 with shorter dwell times
 achieve continuous surveillance

- data used for detection only
- **timely** detection of developing storms
- beam positions at low-elevation angles **may** be active

Scanning strategy schedule: continuous surveillance

FULL	ADAPTS	ADAPTS	ADAPTS	ADAPTS	ADAPTS	ADAPTS	
	t _n	t _{n+1}	t _{n+2}	t _{n+3}	t _{n+4}	t _{n+5}	timé

ERAD '72

ADAPTS reduces update times

NWRT PAR - 05 Jun 2008 - 19:51 to 20:45 UTC

a line of storms develops along a cold front over central OK

time savings depend on size and location of storms

11

theoretical performance

ERAD '72

ADAPTS with **continuous surveillance** provides the **fastest updates** and the **most timely detection** of new storms.

summary

- users want faster updates
 - <u>focused observations</u> result in <u>faster updates</u> with no loss in data quality or spatial coverage
- phased-array radars are suited to perform adaptive focused observations
 - not constrained by mechanical inertia
 - ADAPTS demonstrates that PARs can achieve performance levels not feasible with current operational technology

