Towards the Verification of Dual-wavelength Radar Estimates of Liquid Water Content Using Microwave Radiometer Measurements

1. NCAR Earth Observing Laboratory

2. University of Miami

Background

 LWC estimates using radar reflectivity are difficult due to D⁶ dependency

Drizzle dominates reflectivity

Cloud drops dominate LWC

Background

- Attenuation first proposed to retrieve LWC by Atlas (1954)
- Advantages
 - Attenuation directly related to LWC
 - Independent of DSD (and drizzle!)
- Difficulties
 - Requires two or more radars at different wavelengths
 - Beam matching
 - Ambiguity between attenuation and Mie scattering effects
 - Measurement variance
 - Dependency on temperature
 - Presence of ice...

Background: S-PolKa

- NCAR S-PolKa radar measures Sband (10 cm) and K_a-band (0.8 cm) simultaneously
 - Matched 1 deg beam widths
 - Matched 150 m range gates
- S-band is low-attenuating
- K_a-band is heavily attenuating
- For Rayleigh scatterers the S and K_a-band reflectivity differences are due to liquid and gas attenuation at K_a-band

Frequency band (wavelength)	Liquid Attenuation dB km ⁻¹ (g m ⁻³) ⁻¹
S-band (10 cm)	0.005
K _a -band (0.9 cm)	0.70

LWC Retrieval Method

- Estimate total liquid attenuation (A_{TL}, dB) along ray segment (≥ 2km) of echo by comparing Z at S- and K_a-band (DWR)
 - Avoid regions of non-Rayleigh scattering:
 - Large drops (> 1mm)
 - Ground clutter
 - Biological scatterers
 - Bragg scattering

• Estimate the range resolved attenuation following Tuttle and Rinehart (1983)

 $-A_{L} = Cz_{s}^{p} (z_{s} \text{ in units of } mm^{6} m^{-3})$ •Differential measurement

- -Immune to radar calibration
- –Immune to partial beam blockage
- •Similar to radar/radiometer retrievals

LWC Retrieval Method

- Compute LWC and MVD
 - LWC = $0.74A_{L}(T)$ (Vivekanandan et al. 1999)
 - Temperature correction
 - $-MVD^3 = 2.16 \times 10^{-4} z/LWC$ (Vivekanandan et al. 1999)
 - Assumes an exponential DSD!
- The method is an extension of dual-wavelength LWC retrievals developed by Hogan et al. (2005) and Williams and Vivekanandan (2010) to scanning radars
- The final result is LWC and MVD at the resolution of the radar

Field Campaigns with S-PolKa

- RICO Barbuda, West Indies
- REFRACTT Boulder, Colorado
- DYNAMO Addu Atoll, Maldives

LWC Estimate: Results (RICO)

dBZ Versus Retrieved LWC

LWC Verification??

- Validation of LWC estimated from S-PolKa is difficult
- Several options
 - Aircraft comparisons (RICO)
 - OK for qualitative comparisons to radar LWC
 - Qualitative evaluation problematic
 - Measure clouds that are expected to be adiabatic
 - Compare with collocated scanning radiometer (DYNAMO)

Dynamics of the Madden Julian Oscillation (DYNAMO)

Radar Super-site on Addu Atoll

S-PolKa at DYNAMO IOP

- 24/7 operations of S- and K_a-bands
 October 1, 2011 to January 15, 2012
 - Manned from 6AM to 8PM
 - Unmanned from 8PM to 6AM the next day
 - Possible because of new fault monitoring system
- Scanned PPI volume and numerous RHIs on a 15 minute cycle
- Data available to everyone 1 year after end of ops

LWC Verification Using a Radiometer, g m⁻³

- S-PolKa collocated with scanning radiometer from UM
- Scanned radiometer to ensure overlapping beams with the radar
- Compare radar LWC integrated in range to the radiometer LWP
- First quantitative verification for dual-wavelength LWC!

Radar Radiometer Comparison Status

- S-PolKa
 - Final QC'd data set recently completed
 - LWC analysis has begun
 - Results look similar to RICO
 - Several good radar/radiometer comparison periods identified

Example of LWC, October 20 2011 – 3.5 degree elevation

Radar Radiometer Comparison Status

- Plan to compare scans at 7, 9 and 11 degree elevation
- Radiometer DQ still in progress
- Radiometer has 3 degree beam width
 - Necessitates angular averaging
- Calibration using "tip-cal" technique
- Need to determine and correct surface radiation at low angles

Future Work

- Keep testing LWC retrievals in different environments
- Develop real-time product
- Test double moment DSD retrieval using Z and K_a-band attenuation

Thank You Questions? Comments?

Humidity Profiles Example

P3 Dropsondes near S-PolKa

Dual-wavelength humidity profiles

Courtesy Scott Powell, U Wash