A triple frequency approach to retrieve microphysical snowfall parameters.

Stefan Kneifel, R. Bennartz, M. Kulie, J. Leinonen, D. Moisseev, T. Nousiainen, J. Tyynelä

Outline

- 1. Single scattering properties of various snow habits
- 2. Single and Dual frequency approach
- 3. Triple frequency approach
- 4. Analysis of triple frequency data from Wakasa Bay experiment

Databases of single scattering properties

Stefan Kneifel, University of Cologne, Germany ERAD conference, Toulouse, 2012

Backscattering of single particles (related to part.mass)

Stefan Kneifel, University of Cologne, Germany ERAD conference, Toulouse, 2012

From single particle properties to volume properties

Single frequency technique

Derivation of snowfall properties like snowfall rate (SR):

$$Z_e = a \cdot SR^b$$

Three different published relations have exemplarily been applied to a 6-months snowfall dataset (TOSCA campaign) of 35.5 GHz cloud radar observations.

Problem: Rather different realizations of snowfall (habit, size distribution, mass-size relation) can produce the same Z_e .

Dual frequency approach assuming ,soft' spheres

Dual Wavelength Ratio DWR:

$$DWR_{\lambda_1,\lambda_2} = 10 \cdot \log\left(\frac{Z_{e,\lambda_1}}{Z_{e,\lambda_2}}\right)$$

- Instead of λ: K_u (13.4 GHz), K_a (36.5 GHz), W (94 GHz)
- DWR is independent of the intercept parameter N₀ of the assumed exponential snow size distribution:

$$N(D) = N_0 \cdot \exp(-\Lambda D)$$

- DWR is almost independent of the sphere's density. Λ can be directly derived by measuring DWR.
- The derived A can be used to constrain Ze-SWC relations and to reduce the uncertainty range.

Dual frequency approach with various habits

If non-spherical particles are considered and if particle sizes increase (i.e. A decreases) the "habit – independence" of DWR becomes invalid.

Kneifel et al., JGR, 2011

Possible solution: Combination of three frequencies (K_u, K_a and W-band) to distinguish between different particle habit classes.

Triple frequency approach

Kneifel et al., JGR, 2011

≻The third frequency can provide information on particle habit class and helps to further constrain the derivation of Λ .

>Attenuation due to snow and liquid water has be to considered.

Triple frequency approach – different aggregate models

Leinonen et al. (subm. to JGR): Analysis of Wakasa Bay data (airborne triple freq. radar) *Tyynelä et al., JAOT, 2011: Comparison of fractal, aggregate and soft spheroids.*

Do such signatures really exist?

Triple frequency observations from Wakasa Bay experiment

Triple frequency observations from Wakasa Bay experiment

Conclusions

- Scattering datasets for various snow habits allow to study influence of microphyics on radar variables.
- Dual-frequency technique (K_a/W) is habit/density dependent for ,large' particles (D₀>2mm or Λ<1500 m⁻¹)
- A triple-frequency combination of K_u, K_a and W band reveals different behavior for spherical and aggregates snow.
- First triple-frequency observations reveal consistent features which have still to be prooven with in-situ observations.

Thank you!

Backup slides

Snow particle properties: m-D relation

Extinction of single particles (related to part.mass)

Stefan Kneifel, University of Cologne, Germany ERAD conference, Toulouse, 2012