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Backscatter from snowflakes

« Sphere/spheroid models "

are sometimes 10° |
incompatible with 107 |
observations at mm- 10° |
wavelengths 10° |
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Backscatter from snowflakes

« Sphere/spheroid models "
are sometimes 10°|
incompatible with 107 |
observations at mm- 10° |
wavelengths 107 |

 In many cases, spheroid &
models still work o= 107

« What causes these
differences and how to
understand them?
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Backscatter from snowflakes

« Snowflakes are complex
shapes, so the scattering from
one snowflake is a complicated
process
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Backscatter from snowflakes

« Snowflakes are complex
shapes, so the scattering from
one snowflake is a complicated
process

 The ice density is distributed
unevenly
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Averaging

 For radar studies, we only need

to know the average
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Backscatter from snowflakes

« Snowflakes are complex
shapes, so the scattering from
one snowflake is a complicated
process
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 The ice density is distributed
unevenly
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 The density autocorrelation
carries information about the 4
structure of the snowflake EA|
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Autocorrelation

« Use Rayleigh-Gans scattering theory

* Result: the density autocorrelation function should be
averaged
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Autocorrelation and backscattering

Use Rayleigh-Gans scattering theory

Result: the density autocorrelation function should be
averaged

Result: the change in radar reflectivity as a function of
frequency is given by the Fourier transform of the
autocorrelation function

(Z(k)) = / " R(2) exp(—2jk2) d=

OO

Analogy: autocorrelation function and power spectral
density in signal processing

Understanding the autocorrelation function —
understanding the radar backscattering
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Autocorrelation and backscattering

« Our aggregate model suggests a mixture-of-
Gaussians average autocorrelation function

« One Gaussian (large weight) for the whole aggregate,
another (small weight) for the mass clusters

. N2 _ N 1 22
(R(z)) = — — —exp (| ——— | T
N*  /4r (o2, + 02) (o2 + 0?)

J.:I\'.r 1 ( 32 )
— — exp ( ——
A2 e 2 A2

* Then, the radar reflectivity also follows a mixture-of-
Gaussians curve

« The individual-crystal term is only significant at large
size-wavelength ratios
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Change of reflectivity with frequency
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 From synthetic data (average of 50)
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Change of reflectivity with frequency

* From synthetic data (average of 50)

 Modeled using spheres

Relative reflectivity (dB)
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Change of reflectivity with frequency
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* From synthetic data (average of 50)
 Modeled with spheres
 Modeled using the Gaussian function
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Change of reflectivity with frequency

* From synthetic data (average of 50)

 Modeled with spheres

* Modeled using the Gaussian function

 Modeled with mixture-of-Gaussians parametrization
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Summary

« Sphere/spheroid and Gaussian models of aggregate
snowflakes work well at low frequencies

 These models may fail at higher frequencies (W-band,
Ka-band for the largest snowflakes)

« This failure can be explained in terms of the effect of
individual mass clusters on the autocorrelation
function

« Analysis suggests a mixture-of-Gaussians model
where one term corresponds to the aggregate
structure and another to the individual crystals
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