MIC-346

Stochastic space-time disaggregation of rainfall into DSD fields

Marc Schleiss and Alexis Berne

Laboratoire de Télédétection Environnementale (LTE), EPFL, Switzerland

ERAD 2012, 25-30 $^{\rm th}$ June, Toulouse, France

What is rainfall disaggregation?

No unique solution!

Constraints:

- block-averaged rain rates
- spatial and temporal structures
- intermittency

Why is disaggregation important?

• Many hydrological applications require high resolution rainfall data.

 \rightarrow flash floods, landslides, urban water management

• Rainfall is not a linear process.

Modeling

• Rain rates and intermittency are scale dependent.

Why is this contribution original?

Previous work on rainfall disaggregation mostly focused on rain rates.

 \rightarrow The present disaggregation method is based on the DSD.

The rain rates are derived from the simulated DSD fields.

Modeling

The proposed disaggregation method is based on Geostatistics.

Space-time structures

Climatological variograms estimated using radar and disdrometer data:

- $\gamma_l(h, \tau)$ (intermittency)
- $\gamma_{\mu}(h, \tau)$ (~ drop size)
- $\gamma_{N_t}(h, \tau)$ (~ drop concentration)

Intermittency

Climatological scaling laws are used to estimate the percentage of rainy locations at the fine scale:

 \rightarrow Schleiss et al. 2011, Geophys. Res. Lett., vol.38

Simulation algorithms

- Sequential Indicator Simulation (SIS) for rainfall intermittency
- Sequential Gaussian Simulation (SGS) for DSD parameters
- Multivariate Gaussian transformation technique

The disaggregation procedure

Example 1: Stratiform event

The simulated rain rate distributions and space-time structures are consistent with radar data at the same scale.

Example 2: Convective event

The simulated rain rate fields are slightly too smooth compared to radar data at the same scale.

Perspectives

Many bulk variables (R, Z_h, Z_{dr}) can be computed from the DSD. **Idea:** use Z_h at 2 frequencies to drive the disaggregation process!

Perspectives

Possible input sources for disaggregation:

- ground-based weather radar
- satellite data
- numerical weather models
- point measurements...

 $Y = \int_{D} f(D)N(D)dD$

12 / 13

Conclusions

Summary:

- New rainfall disaggregation technique based on DSD
- Geostatistical framework (variograms)
- Possibility to generate multiple realizations
- The disaggregation procedure can be driven by the rain rate, the reflectivity or any other DSD-related bulk variable.

Limitations:

- Space-time structures difficult to parameterize
- No vertical structure (so far)

Thank you for your attention!

