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Introduction

� Real-time sensing of Wake Vortices at take-off and 
landing for reducing aircraft separation

� UCL is developing a software for the calculation of the 
radar cross section of wake vortices in the framework of 
SESAR P12.2.2 project, with Thales Air Systems
Simulation in two steps� Simulation in two steps
� Evolution of pressure, temperature and humidity versus 

time for the calculation of the refractive index
� Calculation of the Radar Cross Section (RCS) 
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Simulation of the refractive index of the wake 
vortex
�
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Simulation of the refractive index of the 
wake vortex

� The radial density gradient in the vortex cores
� lower pressure in the core
� mainly depends on the airplane type that influences the 

intensity of the flow

� The adiabatic compression of the fluid surrounding the � The adiabatic compression of the fluid surrounding the 
core

� The transport of the atmospheric fluid in the oval surrounding 
the vortices 

� transports the air from one place to another, assuming 
adiabatic compression when the oval descents and the 
ambient pressure increases
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Simulation of the refractive index of the 
wake vortex

Relative dielectric constant variation due to 
density 5s after roll up
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Parameters Values

Airplane mass M=250000 Kg

Wingspan B=68m

Airplane velocity V =133m/s

Ambient pressure

Ambient absolute temperature

Water vapor content gradient

ERAD2012 June 2012



Simulation of the refractive index of the 
wake vortex
�
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Simulation of the refractive index of the 
wake vortex
� Use of incompressible Navier-Stokes equation, with the 

Boussinesq approximation, describing the movement.
� The water vapor concentration obeys to the convection-

diffusion equation (passive tracer “carried away” by the 
fluid) fluid) 

� Equations solved by 2D pseudo-spectral numerical 
methods (all the fields have to be periodical, some 
mathematical artifacts are used to represent periodic 
pressure, water vapor, velocity and potential 
temperature)  

� Runge-Kutta method of order 3
� hyper-viscous term in the equations for the dissipation of 

the high wavenumbers 8



Simulation of the refractive index of the 
wake vortex
� Dielectric permittivity variation due to water vapour, 20s 

after roll up of the vortex
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Calculation of the radar backscattering of 
wake vortices
�
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Calculation of the radar backscattering of 
wake vortices

� 2D permittivity plane repeated in x direction, with no 
variation

� Oscillatory integral I
� integration method proposed by Li : replaces the integral 

by the resolution of a system of differential equations
� More precise than the method of Shariff and Wray 
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Preliminary results

� RCS simulated for a A380 airplane, flying at 100m, with a velocity of 
56 m/s, in a stratified air, with 50% relative humidity and two 
different Brunt-Väisälä frequencies
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Preliminary results

� Radar cross section variation versus vortex evolution 
time
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Conclusion

� Radar cross sections are calculated 
� for a wide frequency range, 
� various airplanes 
� various tropospheric parameters
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