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Introduction

m Real-time sensing of Wake Vortices at take-off and
landing for reducing aircraft separation

m UCL is developing a software for the calculation of the
radar cross section of wake vortices in the framework of
SESAR P12.2.2 project, with Thales Air Systems

m Simulation in two steps

Evolution of pressure, temperature and humidity versus
time for the calculation of the refractive index

Calculation of the Radar Cross Section (RCS)
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Simulation of the refractive index of the wak%

vortex

m Refractive index of air (Thayer)

Py Pcor e 3 €
= [ ] - [ ] - [ ] - [ ] 1 =
N = 077671+ 133702 +0.648:+3.77610°

m Various mechanisms responsible for the variation of the
refractive index

the contribution of the propulsion from the reactors
m linked to the turbo reactor stream

m seems to influence the refractive index in the region close to
the aircraft due to high temperature.

= not considered in this preliminary model because we are only
interested in the vortices a few wingspan away from the
airplane.
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Simulation of the refractive index of the
wake vortex

The radial density gradient in the vortex cores
m lower pressure in the core

= mainly depends on the airplane type that influences the
intensity of the flow

The adiabatic compression of the fluid surrounding the
core

m The transport of the atmospheric fluid in the oval surrounding
the vortices

m transports the air from one place to another, assuming
adiabatic compression when the oval descents and the
ambient pressure increases
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Simulation of the refractive index of the
wake vortex
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q Relative dielectric constant variation due to
density 5s after roll up
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& T Parameters Values
Airplane mass M=250000 Kg
Wingspan B=68m
Airplane velocity V =133m/s
Ambient pressure Pqe = 100000 pa
Ambient absolute temperature T, =288K
Water vapor content gradient m, = —8 X 1078 Kg'mKg
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Simulation of the refractive index of the
wake vortex
m Parameters used for the simulation
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[y is the root velocity,

V, the descent velocity of the vortex pair,

b, the initial vortex spacing, B the wingspan,

V and M are the aircraft velocity and mass,

p is the air density, g the gravity constant, t,is the
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Simulation of the refractive index of the
wake vortex

Use of incompressible Navier-Stokes equation, with the
Boussinesq approximation, describing the movement.

The water vapor concentration obeys to the convection-
diffusion equation (passive tracer “carried away” by the
fluid)

Equations solved by 2D pseudo-spectral numerical
methods (all the fields have to be periodical, some
mathematical artifacts are used to represent periodic
pressure, water vapor, velocity and potential
temperature)

Runge-Kutta method of order 3
hyper-viscous term in the equations for the dissipation of
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Simulation of the refractive index of the
wake vortex

m Dielectric permittivity variation due to water vapour, 20s
after roll up of the vortex
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Ca‘culatlon o! tHe radar backscattering of

wake vortices
m Calculation of the radar cross section
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m ¢ is the distance between the receiver and the volume
element dV,

m K, is the incident wavenumber,
m f(x,y,z) is the radiation pattern,
m A is the amplitude of the incident field
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Calculation of the radar backscattering of

k t . de, distribution within the simulated volume for b0=26.8m w?
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m 2D permittivity plane repeated in x direction, with no

variation

m Oscillatory integral |

Integration method proposed by Li : replaces the integral
by the resolution of a system of differential equations

More precise than the method of Shariff and Wray
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Preliminary results

m RCS simulated for a A380 airplane, flying at 100m, with a velocity of
56 m/s, in a stratified air, with 50% relative humidity and two
different Brunt-Vaisala frequencies

A380, V=56 m/s, N=0.014, RH=50% , Beam 2 A380 V=56 m/s, N=0.03, RH=50% , Beam 2
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Preliminary results

m Radar cross section variation versus vortex evolution
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Conclusion

m Radar cross sections are calculated
for a wide frequency range,
various airplanes
various tropospheric parameters
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