Observing convection from space:
assessment of performances for next-
generation Doppler radars on Low
Earth Orbit
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‘Aetas aurea’ for space-borne Radars

TRMM/PR — NICT/JAXA
Ku, Scanning , Tropical Rain

CloudSat/CPR = JPL/INASA/CSA
W, -30dBZ , Clouds

2006 -Today .
il

GPM/DPR - NICT/JAXA - Some concepts under development or proposed by
Ku/Ka, Scanning, Precipitati& the intemational community ... .
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B SnowSat/PPM NIS
W/Ka, (Doppler) W/Ka, Scanning,
Doppler, GEO

EarthCARE/CPR — NICT/JJXA ACE Radar

W, Doppler, Clouds

W/Ka, Scanning, Doppler

ACH
ACE - ACERAD concept Phased Array conce
W/Ka, Scanning Ka, Doppler W/Ka, Scanning, Dopp

.| What are tk key scientific qtestions thz
By We can address with Doppler capabilities?




Why Doppler from space?

Goal Potential

of Doppler

Measurement of Essential
Vertical (and

horizontal for
scanning?) air motion/
Characterization of

Convection
Hydrometeor Moderate
Classification
Estimation of High in
Precipitationand DSD  stratiform
parameters Low in
convection
Convective/Stratiform = Moderate
Classification
Latent Heat High

Alter native spacebor ne Contribution to Weather and Climate knowledge
observing systems & methods

None in precipitation — Potential - Understanding of precipitation processes and
use of lidar in clear air dynamics on a global scale
- Improvement in the characterization of convection
(vertical profiling and temporal evolution)
- Improvement in GCM'’s skills by assimilating
vertical velocity
Radiometerdimited vertical - Cloud microphysics
resolution.

Non-Doppler multi-frequency
radars- performances to be verified.

Multiparemetric approache Improvement in rainfall rate estimates
(multifrequency, combined assimilation in GCM's
radar/radiometer) limted accuracy
and/or vertical resolution

Non-Doppler Radageceptable
performances over the
tropics(TRMM) - to be verified on a
global scale (GPM)

Multiparametric approaches - Improvement in Latent Heating vertical profiling fo
(multifrequency, radar/radiometer) - assimilation in atmospheric models
good in estimating maximum,
unreliable performancesin vertical
profiling (especially in convection)

Improvement in Latent Heating global maps
Improvement in radiation budget studies
Improvement in rainfall rate estimates



Alirborne observations of convection
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Convective tower: ER-2 observations
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Convective tower:

Staggered PRF 4/5 kHz
(VNvo=15.9 m/s)

Doppler VeIOC|ty W-band
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Critical regions:
1) low SNR
2) strong wind gradients (blurred region)
For LEO satellites

3) multiple scattering

4) Doppler fading (accuracy, aliasing)
5) NUBF biases

.. Tanelli et al.,2003-2004
6) pomtlng accuracy

Battaglia et al,.2011
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Doppler velocities

Doppler Velocity X-band
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Frequency 94 050GHz
Peak power 1.5kw (ECL)
PRF 6100Hz to 7500Hz
(during nominal cbservation)
Antenna diameter 2.5m
Beam width 0.095deg
(Beam foot print) (800m)

Wertical resolution

(Pulse width)

500m
(3.3us)

Horizontal resolution

500m

Minimum sensitivity

-35dBZ (10km integration,

uniform cloud)

Doppler measurement

accuracy

1m/s (10km integration,

-19dBZ clouds)
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km]

VNyq:4.8'6
EarthCARE
Cloud Profiling Radar
specs
We have a Doppler
dilemma even if EC is
operated in nadir pointing

configurations (low dynamic
in the unambiguous range)



Polarization diversity technique
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Polarization diversity technique: contra

1) Technological-issues = PDPP requires
* two receiver channels that can simultaneously measure the orthogonal

polarization components
e transmitter has to switch polarization from pulse to pulse

2) Blind-layer issues
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End to end instrument simulator

DOMUS (Battaglia and Tanelli, 2011) is coupled
with a signal processing simulator
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1/Q time series

generation using
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Merging co and cross-pol signals
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Accuracy of Doppler estimates
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PPPD is performing significantly better than simple PP

12

6 8 10 12 14
Along track distance [km]

200

150

-~ 1100

var(vp) = 1672T2p2(T,) 2M2
1 Lt {
2M (SNR)? © SNR M

- var({vz)) = f(wy,SNR, 'l’z_.\,-'}/i‘l'irlﬂ

0.5

Height [km]

20

181

161

14+

12+

-
o
T

EarthCARE std(v,)) [m/s|@PRF=6662 Hz

A {1*ﬂ%2)

Zrnic 1977

M—1
S pPmTy) (M — |im|) +

m=—{M—1)

1 |

Integration lenght=500m

1.5

2 4 6 8 10 12
Along track distance [km]

0



Single profile: EC vs EC-PolDiv

2) Producing strong aliasing effects

EC-Pulse pair estimates (PRF=6600Hz) are:
1) oscillating between £5.3 m/s in noise
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Interlaced mode

power
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Conclusions

1) Aliasing (5-6 m/s Nyquist velocity for EarthCARE) is the primary
concern when considering W-band Doppler observations of
convection.

2) Polarization diversity technigue can provide a viable (but

more expensive) solution to significantly

3) Preliminary results show that T,,,~30-50 pis Is the best
choice for optimal velocity estimates

4) Cross-talk introduced by multiple scattering, by surface
return and by hydrometeor depolarization tend to introduce
ghost echoes (blind layers). An interlaced mode is deemed
necessary for identifying ghost echoes and regions where
MS occurs.

Doppler estimates are believed to be reliable and useful
for regions with SNR>5dB and not-affected by MS.



Conclusions

W-band radars
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