Backscatter differential phase - estimation and variability.

S. Trömel(1), M. Kumjian(2), A. Ryzhkov(2), C. Simmer(3), A. Tokay(4), J.-B. Schroer(3)

(1) Hans-Ertel-Centre for Weather Research,
 Atmospheric Dynamics and Predictability Branch, University Bonn, Germany
(2) NOAA's National Severe Storms Laboratory, Norman, USA
(3) Meteorological Institute of the University of Bonn, Germany
(4) Joint Center for Earth Systems Technology (JCET),
 University of Maryland Baltimore County (UMBC), USA
Hier können dann die Logos der Forschungseinrichtungen platziert werden.
Outline

1. Introduction

2. δ in rain
 – Estimation of δ
 – DSD analysis with respect to Z_{DR}-δ-relation

3. δ within the melting layer
 – Estimation of δ
 – The impact of non-uniform beam filling
 – Variability of δ at X, C, and S-bands

4. Conclusions
Introduction

The measured total differential phase Φ_{DP} shift consists of the 2 components:

$$\Phi_{DP} = \delta + 2 \int_0^K K_{DP}(s) dS = \delta + \varphi_{DP}$$

where

- Φ_{DP} = total differential phase,
- φ_{DP} = differential propagation phase,
- K_{DP} = specific differential phase,
- δ = backscatter differential phase.

For accurate rainfall estimation using K_{DP} backscattered and propagation components of Φ_{DP} need to be separated before specific differential phase K_{DP} is estimated from the range derivative of Φ_{DP}.

Perturbations of the Φ_{DP} profile through the melting layer can be attributed either to δ or effects of nonuniform beam filling (NBF).

Benefits of using δ is its direct relation to the prevalent size of hydrometeors:

- δ can be used for more accurate retrieval of hydrometeor size distributions
- δ should be generally correlated with Z_{DR}, can serve as a proxy for Z_{DR}
Backscatter differential phase δ of raindrops

Fig. Simulated δ as a function of equivolume raindrop diameter for different wavelengths and temperatures.

δ in rain depends on λ and T and increases with raindrop size.
Estimation of δ in rain

Application of the ZPHI-method (Testud et al., 2000) and the slightly modified self-consistent method proposed by Bringi et al. (2001):

- **External constraint:** $\Delta \phi_{DP} = \phi_{DP}(r_2) - \phi_{DP}(r_1)$ with ranges r_1 and r_2 from the radar

- **2 relationships** $A_h = \beta Z_h^b$ and $A_h = \alpha K_{DP}$ with β, $\alpha = fkt(\text{drop shape, } T)$

$$A_h(r) = \frac{[Z_a(r)]^b f(\Delta \phi_{DP})}{I(r_1; r_2) + f(\Delta(\phi_{DP}))I(r; r_2)}$$

where

$$I(r; r_2) = 0.46b \int_{r}^{r_2} [Z_a(s)]^b ds,$$

$$I(r_1; r_2) = 0.46b \int_{r_1}^{r_2} [Z_a(s)]^b ds,$$

$$f(\Delta \phi_{DP}) = 10^{0.1ab\Delta \phi_{DP}} - 1$$

The selfconsistent method (Bringi et al., 2001), slightly modified, searches for optimal α and b by comparing calculated and measured Φ_{DP}:

$$\min_{\alpha, b} \Delta \phi = \sum_{i=1}^{N} |\varphi_{DP}^{cal}(r_i; \alpha; b) - \Phi_{DP}(r_i)|$$

where

$$\varphi_{DP}^{cal}(r, \alpha; b) = 2\int_{r_1}^{r} \frac{A(s; \alpha; b)}{a} ds$$
Estimation of δ in rain

Application of the ZPHI-method (Testud et al., 2000) and the slightly modified self-consistent method proposed by Bringi et al. (2001).

Differences between Φ_{DP} and Φ_{cal}^{DP} calculated via the ZPHI-method reveal statistical fluctuations and δ.

$\rho_{HV}>0.9$ is used as criterion for separating δ perturbations and the ones caused by noise.

Pro: Method provides reasonably robust estimates of δ and K_{DP} in pure rain outside areas affected by NBF or low S/N ratios. Spatial and temporal coherency of retrieved δ can be demonstrated.

Con: Less suitable for areas with high K_{DP}.

Fig: PPIs of δ for the BoXPo1 observations on June 22, 2011 between 11:11 UTC and 11:26 UTC.
Reliability of the method for δ detection

Example: PPIs of δ for the BoXPoI observations on June 22 between 11:11 UTC and 11:26 UTC.

Pro:
- Spatial and temporal coherency of retrieved δ can be demonstrated.

Con:
- Less suitable for areas with high K_{DP}.
Z\textsubscript{DR}-δ relationships

Simulations for X-band based on...

2D Video measurements in Oklahoma, USA

- at 0°C
- at 30°C
- δ = Z\textsubscript{DR}^{1.8}

Parsivel measurements in Bonn, Germany

- at 15°C
- δ = Z\textsubscript{DR}^{1.8}

The overwhelming part of variability can be related to the temperature of raindrops.
The impact of differences in DSDs seems to be small.
Backscatter differential phase δ - another parameter for characterizing dropsizes -

Simulations for X-band at 15 °C based on..

2DVideo measurements in Oklahoma, USA

Parsivel measurements in Bonn, Germany
Backscatter differential phase δ in the melting layer

Observed bumps in differential phase Φ_{DP} may be associated either with

1. backscatter differential phase δ
2. nonuniform beamfilling (NBF):

$$\Delta \Phi_{DP} = 0.02 \Omega^2 \frac{d\Phi_{DP}}{d\theta} \frac{dZ}{d\theta}$$
(Ryzhkov et al., 2007)

Method for reliable δ-estimation in the melting layer:

- Calculate azimuthally averaged radial profiles of Φ_{DP} from measurements at higher elevation angles
- forward propagation contribution is minimized
- suppress fluctuations of Φ_{DP} caused by reduction of ρ_{HV} within the melting layer,
- impact of NBF is minimized
Backscatter differential phase δ in the melting layer

Observed bumps in differential phase Φ_{DP} may be associated either with

1. backscatter differential phase δ

2. nonuniform beamfilling (NBF) $\Delta \Phi_{DP} = 0.02 \Omega^2 \frac{d\Phi_{DP}}{d\theta} \frac{dZ}{d\theta}$ (Ryzhkov et al., 2007)

Method for reliable δ-estimation in the melting layer:

Fig. Azimuthally averaged quasi-vertical profiles from the polarimetric X-band radar in Bonn (BoXPol), Germany, obtained on 04 December 2011, at 20:51 UTC, from the PPI at elevation 7°.
Backscatter differential phase δ in the melting layer

Observed bumps in differential phase Φ_{DP} may be associated either with

1. backscatter differential phase δ \hspace{1cm} $\delta_{obs,X} = 3^\circ$

2. nonuniform beamfilling (NBF) \hspace{1cm} $\Delta \Phi_{DP} = 0.11^\circ$

Method for reliable δ-estimation in the melting layer:

Fig. Azimuthally averaged quasi-vertical profiles from the polarimetric X-band radar in Bonn (BoXPoI), Germany, obtained on 04 December 2011, at 20:51 UTC, from the PPI at elevation 7°.
Variability of δ within the melting layer at X, C, and S bands

-Observations at X-band (BoXPol), $\delta_{\text{obs},X} \approx 7^\circ$

Fig. Magnitudes of the extremes of Z_{DR}, ρ_{HV}, and δ in the melting layer observed with BoXPol at 7° elevation on December 04, 2011 between 19:36 UTC and 22:29 UTC.
Variability of δ within the melting layer at X, C, and S bands

- Observations at X-band (BoXPol), $\delta_{\text{obs},X} \approx 7^\circ$

Fig. Relative heights of the extremes of Z_{DR}, ρ_{HV}, and δ in the melting layer observed with BoXPol at 7° elevation on December 04, 2011 between 19:36 UTC and 22:29 UTC.
Variability of δ within the melting layer at X, C, and S bands

- Simulations -

Fig. Simulated vertical profiles of Z, Z_{DR}, and δ within the melting layer at S, C, and X bands. Freezing level is at 1 km, temperature lapse rate is 6.5 °/km, relative humidity is 100%, and rain rate near the surface is 5 mm/h.
Variability of δ within the melting layer at X, C, and S bands

-Observations at X-band (JuXPol), $\delta_{\text{obs},X} \approx 7.5^\circ$

Fig: Azimuthally averaged quasi-vertical profiles from the polarimetric X-band radar in Jülich (JuXPol), Germany, obtained on 24 September 2010, at 4:50 UTC, from the PPI at elevation 37°.
Variability of δ within the melting layer at X, C, and S bands

- Observations at C-band (OU-PRIME), $\delta_{\text{obs,C}} \approx 6^\circ$

Fig: Azimuthally averaged quasi-vertical profiles from the C-band University of Oklahoma Polarimetric Radar in Meteorology and Engineering (OU-PRIME), USA, obtained on 24 December 2009, at 16:41 UTC, from the PPI at elevation 10°.
Variability of δ within the melting layer at X, C, and S bands

- Observations at S-band (KATX), $\delta_{\text{obs},S} \approx 5.5^\circ$

Fig: Azimuthally averaged quasi-vertical profiles from the KATX polarimetric WSR-88D S-band radar near Seattle, Washington, USA, obtained on 18 February 2012, at 00:59 UTC, from the PPI at elevation 7.5°.
Conclusions

- New methods for estimating δ in rain and in the melting layer have been suggested.

1. Estimating δ in rain is based on the ZPHI method and provides reasonably robust estimates of δ and K_{DP} in pure rain.
 → Relevant for quantitative precipitation estimation, especially at X band

2. Reliable estimates of δ within the melting layer of stratiform precipitation can be obtained via azimuthal averaging of radial profiles of Φ_{DP} at high antenna elevations.
 → Method enables to examine microphysical properties of the melting layer and likely to estimate maximal size of melting snowflakes.

- Large disdrometer datasets collected in Oklahoma and Germany confirm a strong interdependence between backscatter differential phase δ and differential reflectivity Z_{DR}.
 → δ and Z_{DR} are differently affected by particle size spectra and can complement each other for particle size distribution (PSD) retrievals.
Thank you!

Trömel, S., Kumjian, M., Ryzhkov, A., Simmer, C.: Backscatter differential phase - estimation and variability. To be submitted next week to JAMC.