High-resolution vertical profiles of X-band polarimetric radar observables during snowfall in the Swiss Alps

M. Schneebeli¹, N. Dawes², M. Lehning² and A. Berne¹

¹Environmental Remote Sensing Laboratory, EPFL, Lausanne, Switzerland ²WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland

marc.schneebeli@epfl.ch

Motivation

Snow crystal habit

- Can snow microphysical processes be observed with an X-band polarimetric radar?
- Can such a radar distinguish different snow particles?

General atmospheric behavior

- Do X-band polarimetric variables exhibit a general behavior with height?
- Can such a behavior be related to atmospheric processes?

High-resolution vertical profiles of X-band polarimetric radar observables during snowfall in the Swiss Alps

2 / 12

Conclusions

Motivation

PRECIPITATION MECHANISMS

Snow crystal habit

- Can snow microphysical processes be observed with an X-band polarimetric radar?
- Can such a radar distinguish different snow particles?

General atmospheric behavior

- Do X-band polarimetric variables exhibit a general behavior with height?
- Can such a behavior be related to atmospheric processes?

Measurements

Conclusions

- Radar at 2133 m above sea level.
- Considered period: End of February to end of April 2010.
- Around 110 hours of snowfall collected above the melting layer.
- Contrasting snow events: cold dry snow, aggregates, graupel, dendrites.

- Radar constant determined with a corner reflector.
- Radar orientation determined by sun tracking.
- Z_{dr} is calibrated by rotating the antenna at 90° elevation.

Radar

- RHI scan every 5 min.
- 150 samples per ray at 1° resolution.
- 6 vertical profiles extracted between 5 and 10 km distance from the radar.

Water vapor

- Water vapor path (WVP) inferred from GPS signal.
- WVP separated into three temperature segments by using the humidity and temperature measurements at different height levels.

Radar

- RHI scan every 5 min.
- 150 samples per ray at 1° resolution.
- 6 vertical profiles extracted between 5 and 10 km distance from the radar.

Water vapor

- Water vapor path (WVP) inferred from GPS signal.
- WVP separated into three temperature segments by using the humidity and temperature measurements at different height levels.

Snow intensity

• Snow accumulation per time inferred from several snow height sensors.

Temperature profile

• Determination of the 0° level by fitting temperature measurements at different height levels.

High-resolution vertical profiles of X-band polarimetric radar observables during snowfall in the Swiss Alps

6 / 12

Snow intensity

• Snow accumulation per time inferred from several snow height sensors.

Temperature profile

• Determination of the 0° level by fitting temperature measurements at different height levels.

Measurements

Results

Conclusions

Distribution of polarimetric observables

Conclusions

Distribution of polarimetric observables

Dendrification signal in Z_{dr} and $K_{dp} \rightarrow$ Kennedy et al., JAMC, 2011.

Measurement

Results

Conclusions

Mean Hydrometeor identification

- Hydrometeor identification with the algorithm of Dolan and Rutledge, JTECH, 2009.
- Increasing abundance of aggregates towards higher temperatures.
- Increasing abundance of graupel towards higher temperatures.

Aggregates, Crystals, High density graupel, Low density graupel

Polarimetric profiles as a function of humidity

Measurements

Conclusions

Polarimetric profiles as a function of humidity

- Signature of dendrification in high water vapor conditions.
- Increased abundance of graupel in high water vapor conditions.
- Increased abundance of crystals in low water vapor conditions.

Aggregates, Crystals, High density graupel, Low density graupel

Conclusions

Hydrometeor identification vs. snowfall rate

- Strongly increased signature of graupel formation for high snowfall rates. → Harimaya and Nakai, JMSJ, 1999; Houze and Medina, JAS, 2005.
- Increased abundance of aggregates for high snowfall rates.

Aggregates, Crystals, High density graupel, Low density graupel

Conclusions and Outlook

Conclusions

- The average behavior of around 8000 vertical polarimetric profiles measured with an X-band radar above the melting layer has been studied.
- X-band polarimetric profiles as a function of the height above 0°C are related to microphysical processes such as dendrification, aggregation and riming.
- High snowfall rates are coupled to increased riming occurrence.

Outlook

• Are we able to theoretically reproduce and confirm these observations by coupling an electrodynamical model to a snow microphysics model?

Conclusions and Outlook

Conclusions

- The average behavior of around 8000 vertical polarimetric profiles measured with an X-band radar above the melting layer has been studied.
- X-band polarimetric profiles as a function of the height above 0°C are related to microphysical processes such as dendrification, aggregation and riming.
- High snowfall rates are coupled to increased riming occurrence.

Outlook

• Are we able to theoretically reproduce and confirm these observations by coupling an electrodynamical model to a snow microphysics model?

High-resolution vertical profiles of X-band polarimetric radar observables during snowfall in the Swiss Alps

12 / 12