

8A.4

Differential Reflectivity Calibration for Simultaneous Horizontal and Vertical Transmit Radars

ERAD 2012 Toulouse, France

27 June 2012

J.C. Hubbert¹, M. Dixon¹, A. Heck², R. L. Ice², and D. Saxion²

¹National Center for Atmospheric Research. Boulder, CO. (hubbert@ucar.edu)

²The Radar Operations Center. Norman, OK

Vertical Pointing in Light Rain

"Gold standard"

- End-to-end measurement
- But, rain many not occur frequently at radar site
- Radome wetting can play a role

There's Another Way!

- Crosspolar power (CP) technique
- Also "end-to-end" technique
- Does not require rain at the radar

The CP Z_{dr} Calibration Technique

Reciprocity:
$$S_{hv} = S_{vh}$$

Scattering Matrix:
$$E_r = \begin{pmatrix} S_{hh} & S_{hv} \\ S_{vh} & S_{vv} \end{pmatrix} E_r$$

Reciprocity applies over the entire antenna pattern!!

Crosspolar powers are equal!!

Z_{dr} Calibration Equation

$$Z_{dr} = Z_{dr}^{m} S^{2} \left(\frac{\overline{R_{HVHV}}}{R_{VHVH}} \right)$$

Where S is a ratio of V to H passive sun powers
R_{HVHV}, R_{VHVH} are the two crosspolar powers

Need to be measured well with in target decorrelation time

✓ The sun fills the radar beam well

✓ The crosspolar powers are independent of the antenna patterns

Simple Block Diagram

Can use weather targets for X-pol pole power measurements for fast alternating H and V transmission data!

CP Z_{dr} Calibration

$$\frac{R_{VHVH}}{R_{HVHV}} = \frac{P_H C_H^T C_V^R G_V^R \left\langle \left| S_{VH} \right|^2 \right\rangle}{P_V C_V^T C_H^R G_H^R \left\langle \left| S_{HV} \right|^2 \right\rangle}$$

Crosspolar powers

$$S = \frac{W_V G_V^A C_V^R G_V^R}{W_H G_H^A C_H^R G_H^R}$$

Sun measurement

CP Z_{dr} Calibration

$$Z_{dr}^{m} = \frac{P_{H}C_{H}^{T}W_{H}^{2}(G_{H}^{A})^{2}C_{H}^{R}G_{H}^{R}\left\langle\left|S_{HH}\right|^{2}\right\rangle}{P_{V}C_{V}^{T}W_{V}^{2}(G_{V}^{A})^{2}C_{V}^{R}G_{V}^{R}\left\langle\left|S_{VV}\right|^{2}\right\rangle}$$

$$Z_{dr} = Z_{dr}^{m} S^{2} \frac{R_{HVHV}}{R_{VHVH}} = \frac{\left\langle \left| S_{HH} \right|^{2} \right\rangle}{\left\langle \left| S_{VV} \right|^{2} \right\rangle}$$

SHV Zdr Calibration for Simultaneous H and V Transmission

- E.g., WSR-88D is a simultaneous H and V transmit system
- Does that matter when doing Zdr calibration?
 - Yes! Must use crosspolar power targets that do not vary in time
 - -i.e., ground clutter targets

Another Requirement

The electrical paths for S and R_{HVHV} , R_{VHVH} measurements are the same paths as the weather signals follow!

Front End for S-Pol

Advantage: Only H and only V paths are identical to simultaneous H/V paths.

 $P_{H}^{S} = P_{H}^{only} \qquad P_{V}^{S} = P_{V}^{only}$ *The is not true for NEXRAD!*

WSR88-D Block Diagram

Zdr Cal. For NEXRAD

$$Z_{dr}^{m} = \frac{P_{H}^{S}C_{H}^{T}W_{H}^{2}(G_{H}^{A})^{2}C_{H}^{R}G_{H}^{R}\left\langle\left|S_{HH}\right|^{2}\right\rangle}{P_{V}^{S}C_{V}^{T}W_{V}^{2}(G_{V}^{A})^{2}C_{V}^{R}G_{V}^{R}\left\langle\left|S_{VV}\right|^{2}\right\rangle}$$
$$\frac{R_{VHVH}}{R_{HVHV}} = \frac{P_{H}^{Only}C_{H}^{T}C_{V}^{R}G_{V}^{R}\left\langle\left|S_{VH}\right|^{2}\right\rangle}{P_{V}^{Only}C_{V}^{T}C_{H}^{R}G_{H}^{R}\left\langle\left|S_{HV}\right|^{2}\right\rangle}$$

Problem: $P_{H}^{S} \neq P_{H}^{only}$ $P_{V}^{S} \neq P_{V}^{only}$

Zdr Cal. For NEXRAD

- Thus we need to measure these transmit powers!
- But measurements can introduce additional uncertainty

Zdr Cal. For NEXRAD

$$M = \frac{P_{H}^{only}}{P_{H}^{S}} \quad N = \frac{P_{V}^{S}}{P_{V}^{only}}$$

Because since these are ratios, the uncertainties of the power measurements cancel

$$Z_{dr,cal}^{88D} = Z_{dr}^{m} S^{2} \frac{R_{HVHV}}{R_{VHVH}} MN$$

Calibration Measurements

1. Scan the sun passively

- 3 box scans about 7 deg. by 3 deg.
- Integrate over ~1 deg. solid angle
- 2. ~Ten low level PPI scans for crosspolar powers
 - Alternate H and V transmit on a PPI by PPI basis
 - Watch for receiver saturation!
 - Use indexed beams!!
- 3. Monitor the 4 transmit powers
- 4. Monitor the H and V receiver paths (from LNAs to I&Q) by injecting test signals (for calibration maintenance)

Calibration versus Calibration Monitoring

- The gains of the receiver paths will likely vary as a function of time, as will the transmit powers.
- Need to monitor this variation and correct for it.
- Continue to monitor the 2 transmit powers $P_{H_{.}}^{S_{t}} P_{V}^{S_{t}}$
- Continue to monitor the H and V receiver paths (from LNAs to I&Q) by injecting test signals

For example, calculate $P_H^{S_t}/P_H^{S_0}$ and adjust Zdr accordingly, dynamically.

S-Pol Crosspolar Power Histograms

Fast alternating H and V pairs

Alternate PPI H and V pairs

KOUN Crosspolar Power Histogram

17

S-Pol at DYNAMO in the Idian Ocean, Maldives

CP/VP Results from DYNAMO

Date	S1S2	Hx/Vx bias	CP Zdr bias	Vert (dB)	ZDR Error
====	====	=====	====	=====	=====
2011/09/2	5 -0.300	-0.001	-0.299		
2011/09/2	8 -0.298	-0.004	-0.302		
2011/09/2	9 -0.232	-0.010	-0.242		
2011/10/0	5 -0.268	-0.047	-0.315	- 0.284	0.031
2011/10/1	0 -0.237	-0.036	-0.273	- 0.291	0.018
2011/10/2	3 -0.296	-0.023	-0.319	-0.307	0.012
2011/12/0	5 -0.278	-0.020	-0.298		
2011/12/0	9 -0.279	-0.019	-0.298	- 0.304	0.006
2011/12/1	5 -0.271	-0.020	-0.290		
2011/12/1	8 -0.369	0.009	-0.360		
2011/12/2	5 -0.196	0.008	-0.188		
2012/01/0	2 -0.279	-0.011	-0.280		
2012/01/1	4 -0.336	0.022	-0.314	-0.327	0.013
2012/01/1	6 -0.390	0.055	-0.340		

CP/VP Results from DYNAMO

Below are the results of computing the CP-derived Zdr bias for various tilt angles, on 8 Jan. 2012. S-Pol was running volume scans on this clear day.

Elevation	Alt CP	PPI CP	Error (dB)
	======		========
0.5 deg	-0.022	0.005	0.027
1.5 deg	-0.001	0.011	0.012
2.5 deg	0.002	0.009	0.007
3.5 deg	0.002	-0.016	-0.018
5.0 deg	0.001	0.016	0.015

The mean squared error estimate is 0.017 dB.

KOUN Sun Scan Data

H antenna pattern

Zdr antenna pattern

KOUN Sun Scan Data

H antenna pattern

H to V correlation antenna pattern

KOUN Calibration Data

From 7 June 2012

Time	<mark>Sun</mark> Sh/Sv	<mark>Xpol Pow.</mark> CPv/CPh	<mark>Receiver</mark> RXv/RXh	Tx Pow. TXv/TXh	Zdr bias
12:39	0.445	0.084	-0.430	-0.092	0.007
13:04	0.459	0.119	-0.439	-0.092	0.050
13:29	0.423	0.103	-0.435	-0.092	0.003
13:44	0.444	0.146	-0.429	-0.092	0.068

There are some calibration sets that are not so well behaved! These measurements need to be done over several days to establish the uncertainty

• But how can we cross-check the CP calibration figure??

Zdr versus Z Histograms

Zdr calibration check

2.4 deg. elevation

3.1 deg. elevation

At ~20dBZ, Zdr~=0.25dB At <10dBZ, Zdr~=0 dB

From histograms, mean Zdr = 0.58dBZdr bias:0.58 - 0.25 = 0.33dB

Summary

- The CP Zdr calibration technique has been shown to compare very well with the VP technique on S-Pol
- The transmitter topology of WSR-88Ds presents a further challenge for the CP technique
 - Need to measure the transmit power
- Testing CP on KOUN is ongoing. More data sets need to be gathered not only with KOUN but several other WSR-88Ds as well

Thank You for Your Attention

Questions?

hubbert@ucar.edu

"The basic calibration process is a difficult and expensive challenge. The cost for ordinary equipment support is generally about 10% of the original purchase price on a yearly basis, as a commonly accepted rule of thumb."

"The extent of the calibration program exposes the core beliefs of the organization involved."