Dept. of Meteorology

University of Reading **Correcting attenuation** in operational radars from both heavy rain and the radome using the observed microwave emission

Robert Thompson, Anthony Illingworth

& thanks to J. Ovens, J. Sugier, T. Darlington & A. Curtis ERAD 27 June 2012

Introduction

- We present a technique using emission to monitor the attenuation for each PPI at each azimuthal angle.
- The technique measures TOTAL attenuation both from distant storms and from the radome (previously largely ignored).
- If the radome contribution is isolated, we have a useful constraint for other techniques such as gate-by-gate or differential phase.
- Some lab experiments suggest radome can be 3dB for 15mm/hr (e.g. Kurri and Huuskonen, 2008 and others).
- We show old radomes can be 2-3dB for only 2-3mm/hr.

for new radomes can be 2-3dB for only 5mm/hr

Principle: All absorbers are emitters

- Radars can act as radiometers if the increased receiver noise is measured. (Fabry 2001, 30th AMS Radar Conference, Munich)
- C-band brightness temperature at low elevation, T_g , ~80K (due to gaseous emission mostly oxygen, about 25% water vapour).
- A fully attenuating radome/target has brightness temp, $T_p \sim 280$ K.
- For fractional one-way attenuation, f, the measured temp, T_m is

$$T_m = f T_p + (1-f) T_g$$

By observing the increased noise temperature from dry conditions, $\varDelta T$

$$f = (T_m - T_g) / (T_p - T_g) = \Delta T / 200$$

university of

Principle: All absorbers are emitters

 $f = (T_m - T_g) / (T_p - T_g) = \Delta T / 200$

- Approx. linear for small attenuations, so **two-way** radar attenuation is

~1dB / 20K change in brightness temperature.

– and for 10% accuracy need T_g and T_p accurate to ~10K. ERAD – 27 June 2012 – Thompson & Illingworth – Emission Technique University of Reading

Hardware

- UK C-band radar network, receiver noise equivalent to $T_b \sim 1000$ K.
- Need to measure a 10K change to detect a 0.5dB 2-way attenuation.
- We need 10,000 samples of noise to achieve 10K accuracy (1%)

Met Office Network Measurement:

- PRF 300Hz, max range ~450km, lots of empty gates.
- 1453 empty gates, 22 pulses per ° azimuth for 30,000 samples.
- Filter to remove any possible far range targets
- For each transmitted pulse, a 1165K noise source is injected at five empty gates to provide continuous calibration.

Distant Storms

- When rain is present, the radome attenuates the storm emission and adds its own emission.
- The recorded emission relates to the TOTAL attenuation.

T_g: annual variation

• Calculated from Larkhill sondes reaching at least 10km altitude

ERAD – 27 June 2012 – Thompson & Illingworth – Emission Technique

Remove Glowing Clutter

ERAD – 27 June 2012 – Thompson & Illingworth – Emission Technique

Remove Glowing Clutter

Vertical lines are the radome, as much as 2dB in this case Curves show distant storms passing the radar, 1.5dB in this case

The radome attenuation isn't constant with azimuth, what controls that?

4dB max attenuation

ERAD – 27 June 2012 – Thompson & Illingworth – Emission Technique

5dB max attenuation

ERAD – 27 June 2012 – Thompson & Illingworth – Emission Technique

5dB max attenuation

ERAD – 27 June 2012 – Thompson & Illingworth – Emission Technique

4dB max attenuation

ERAD – 27 June 2012 – Thompson & Illingworth – Emission Technique

7dB max Attenuation: only 20% left

ERAD – 27 June 2012 – Thompson & Illingworth – Emission Technique

- Display total attenuation after clutter removal.
- Black circles: wind direction from the Doppler

- Radome has most attenuation into the wind.
- Little to no attenuation on leeward side of antenna

ERAD – 27 June 2012 – Thompson & Illingworth – Emission Technique

- Fit azimuthal variation in attenuation to a sine wave.
- Plot angle with respect to Doppler wind
 - Peak into wind
 - Bias is average attenuation
 - Amplitude is increase at front.
- Average over a number of days for composites with rainrates and wind speed.

- Model radome attenuation as sine wave
 - Peak into wind
 - Bias is average attenuation
 - Amplitude is increase at front.
- Average over a number of days for composites with rainrates and wind speed.
- In heavier rain more attenuation on all sides.
- Windier weather increases windward/leeward difference.

- NOT the same at all elevations.
- Much more attenuation at higher elevation angles
- The elevation with respect to the radome equator is important

- Heavier rain (rare in UK) can give higher attenuations.
- A lot of variation cannot use an empirical correction. ERAD – 27 June 2012 – Thompson & Illingworth – Emission Technique

Distant Storms: 18 Aug 11

- ~60mm in the day, more than August average!
- Compare emission and the Hitschfeld & Bordan method
- Good average, a lot of spread
- Suggests H&B has too much attenuation above 5mm/hr.

Summary

- Emission should provide a constraint on total storm attenuation for other correction algorithms.
- Emission technique requires no assumption on hydrometeor size distribution, shape or state (wet/dry).
- Variation in gaseous brightness temperature is small (10K) and easy to correct.
- Radome attenuation varies with azimuth and elevation (2dB between 0.5° and 2.5° beams in 10mm/hr rain), based on wind speed and direction.
 - Stronger radome attenuation into the wind (up to at least 1dB).
- Emission is the only way to directly measure radome attenuation and it's variation with azimuth.
- Neglecting the attenuation of the radome may be cause of problems and poor performance of gauge/radar comparisons.
 ERAD – 27 June 2012 – Thompson & Illingworth – Emission Technique

Other examples

ERAD – 27 June 2012 – Thompson & Illingworth – Emission Technique