Rapid scanning with phased array radars – issues and potential resolution

Dusan S. Zrnic, V.M.Melnikov, and R.J.Doviak

Z field, Amarillo 05/30/2012

r=200 km

 $EI = 1.3^{\circ}$

$\rho_{h\nu}$ field, Amarillo 05/30/2012

r=200 km

 $EI = 1.3^{\circ}$

WSR-88D

- Signal sequences are designed to
 - Obtain accurate estimates
 - Provide polarimetric variables
 - Resolve significant weather features
 - Mitigate Ambiguities in Range and Velocity
 - Cancel ground clutter

Challenges

Possibilities

Rapid Scan

Automatic adaptive; Pulse compression

R/V Ambiguity Mitigation

Adaptive beam to beam dwell; Signal design, Beam multiplex

Ground Clutter

Point null of antenna pattern at clutter; Sidelobe blanking arrays

Dual Polarization: Dependence on beam pointing Depolarization

Choice of sequence (i.e.)

HHVHHVHHV?

Field lines of two E dipoles and E&M dipoles

 $\mathsf{PAR}_{\mathsf{EE}}$

Two E Dipoles The E fields of two Electric dipoles are orthogonal only in principal planes

 $\mathsf{PAR}_{\mathsf{EM}}$

E&M Dipoles

The E fields of Electric and magnetic dipole are orthogonal everywhere

The E & M dipoles are collinear Ongoing development by: Lockheed Martin, BCI, and NSSL

ANOTHER SOLUTION Cylindrical Phased Array PAR_{CYL}

- There is no dependence of polarization on direction. Therefore the PAR_{CYL} radar is equivalent to a conventional radar
- System Study is Ongoing (at University of Oklahoma and NSSL) scanning strategy, multiple beams, frequencies, beamwidth, waveforms,

Error in Estimates Depend on

- Transmitted signal attributes
 - Power, Duration, Bandwidth, Polarization
- Receiver attributes
 - Sensitivity, Bandwidth, Polarization
- Dwell time
 - The shortest equals
 - one PRT for Reflectivity estimation
 - two PRTs for Velocity estimation

BEST POSSIBLE FROM SINGLE PULSE (for Z) and Single Pair (for Vel) (Simultaneous HV mode = SHV)

- SIM (SHV) mode: can pulse compression and averaging provide accuracy of Z and Velocity as on the WSR-88D?
- WSR-88D:
 - Z: Surveillance scans No of samples M=15. Need
 M_I=5.7 independent samples
 - V: Doppler scan No of samples M=40 (PRT=1ms)
 Need M_I=10 independent pairs

Standard error of Z estimates on WSR-88D and on PAR with Pulse Compression

Hypothetical signal timing in the SIM (SHV) mode single beam

Ground Clutter Mitigation for this sequence must be equivalent to the mitigation on the Legacy WSR-88D surveillance and Doppler scans Minimum Time for a 360 deg scan compared to the WSR-88D scan time (beam spacing 1 deg single beam PAR)

Scan	WSR-88D	Min
	time (s)	time (s)
For Z	16	1.65
For v	14	1.4
Total	30	3.05

Alternate (ALT) mode Relaxes Cross-polar isolation requirement

- Dwell time is two or more times longer than in the SIM mode
- Doppler and differential phase Φ_{DP} are coupled
- Processing of Φ_{DP} requires use of continuity in range to extend the principal phase over a 360 deg interval
- Errors in polarimetric variables are larger

Errors in Z_{DR} for the ALT (AHV solid) and SIM (SHV dash) modes

Conclusions

- Theory suggests that
 - PAR_{ME} and PAR_{CYL} can operate in the SIM polarimetric mode
 - PAR_{EE} could operate in SIM mode but with H and V encoded with orthogonal codes Neither of these have been tested
- Choice of the Polarimetric mode (SIM or ALT) influences
 - Schemes to estimate polarimetric variables
 - Schemes to mitigate range/velocity ambiguities
 - Schemes to filter ground clutter
- Without Clutter Filter but with pulse compression
 - SIM mode: volume scans can be ~ 10 times faster than standard WSR-88D scans
 - ALT mode: volume scans
 - DOPPLER MODE ~ 10 time faster than WSR-88D
 - SURVEILLANCE MODE requires larger compression ratio and bandwidth to equal WSR-88D scan time for polarimetric measurements
 - Therefore special POLARIMETRIC MODE needs to be designed
- Time domain clutter filter increases dwell time
 - Space-Time Adaptive Processing applied to filtering ground clutter at each range location might meet the WSR-88D requirements?

Solid State Amplifier

Pulse Compression: Range Weighting Functions (Notional example: Barker 7 code)

Z_{DR} field, Amarillo 05/30/2012

r=200 km

EI = 1.3°

Challenges for PAR (to observe Weather)

- A) Obtaining Polarimetric Variables with satisfactory precision in Simultaneous H,V mode
- B) Ground clutter canceling
- C) Scanning very rapidly

Wichita Kansas radar

One hour rain accumulation

Wichita Kansas radar

MPAR's Capabilities for Weather Observation

- The capabilities of the WSR-88D have increased substantially since its deployment
- Its potency will continue to improve
- Therefore the MPAR should match or exceed the WSR-88D capabilities which will exist at the time of replacement

Polarization Modes and Compensation for Inherent Change

- Alternate (ALT separate) transmission of two polarization states with compensation on
 - Transmission and Reception
 - Reception
- Transmission of SAME polarization state and separate reception of each with compensation on
 - Transmission and Reception
 - Reception
- Compensation on Transmission is done on each transmitted pulse and depends on the pointing direction
- Compensation on Reception can be done on each returned sample or on estimates of powers and correlations

No of independent samples M_l in surveillance scans on the WSR-88D and $M_l=5.7$ on an MPAR

Dwell Time Extenders

- Canceling Clutter imposes lower limit on dwell time:
 - Can combined spatial filter and temporal filter reduce the dwell time compared to sole use of temporal filter?
- ALT (AHV) mode requires longer dwell times compared to SIMULTANEOUS (SHV) mode
- Mitigation of range a velocity ambiguities
 - Two PRTs (one for Z the other for v)
 - Staggered PRT

Correlation along Range-Time Code: Barker 7

Dwell Time Reducers

- Pulse over-compression followed by averaging in range
 - Currently available transmit modules deliver 30 to 75 W of power with high efficiency
 - Required sensitivity can be achieved without compressing the pulse
 - Compression followed by range averaging can increase the number of independent estimates and thus reduce errors of estimates
- Oversampling and whitening of samples in range
- Adaptive scanning

Pulse Compression Issues

- Bandwidth allowance?
- Range time sidelobes
- Effects of Doppler shift