Measuring Snowfall with a Low-Power K-Band Radar (Micro Rain Radar) in Polar Regions

Micro Rain Radar (MRR)

- Vertically pointing
- 24 GHz (12.4 mm)
- 30 range gates
- 30...200 m vertical resolution
- FM-CW
- 50 mW, 25 W, 20 kg
- Developed for rain

Get Ze from MRR data

Must not be used for snow, because Z is derived from DSD assuming only rain

Noise & Height corrected Doppler Spectra

Good performance > 3 dBz Incomplete noise removal disturbs smaller reflectivities. Correction of aliasing effects needed (Kneifel et al.,2011)

Raw Doppler Spectra

Gives best results for snow with proposed routine

→ Sensitivity ~ -5 dBz

New routine based on Raw Doppler Spectra

New MRR routine is available as open source at http://gop.meteo.uni-koeln.de/software/

- 1. Determine the most significant peak including its borders (modified Hildebrand and Sekhon, 1974)
- 2. Define remaining spectrum as noise and remove noise from peak
- 3. Dealiase the spectrum, because Nyquist range is small (using Ze v relation by Atlas et al., 1973)
- 4. Calculate Z_e, SNR, W
- Independent on type of hydrometeor!

Comparison with Cloud Radar

- Reference: MIRA35 35.2
 GHz cloud radar
- Collocated measurements January-April 2012
- at UFS
 Schneefernerhaus
 (German Alps, 2650m)
- $\Delta t = 60s$

MIRA vs. MRR: Z_e Standard Product Proposed Routine

MIRA vs. MRR: Frequency by altitude

MIRA35

UFS Schneefernerhaus Jan-Apr 2012 360 320 2500 2500 1500 1000 1000 200 1000 200 120 80 40 Ze [dBz]

MRR (new routine)

MIRA vs MRR: W

Standard Product

Proposed Routine

Outlook: Application to MRR measurements

- Ny-Ålesund (79°N): winter 2010/11
- Longyearbyen, (78°N): winter 2010/11
- Princess Elisabeth station (72°S): summer seasons 2010,11 and 12

Frequency by altitude diagrams

Spitsbergen

Conclusion

- 1) MRR standard products highly biased for snow.
- 2) But, snow can be observed (> -5 dBz) if the new scheme is used.
- 3) MRR has potential for snowfall climatologies

Thank you for your attention

Thanks to ERAD for covering travel expenses!

Maahn and Kollias (2012): Improved Micro Rain Radar Snow Measurements
Using Doppler Spectra Post-Processing, submitted to AMT
New MRR routine is available at http://gop.meteo.uni-koeln.de/software/

Comparison of sigma

Comparison with Cloud Radar

- Reference: MIRA35
 35.2 GHz cloud
 radar
- January-April 2012 at UFS Schneefernerhaus (German Alps)
- >15% of data had to be discarded because of attenuation due to wet snow on dish

Metek's (indirect) approach for Z

Assume Doppler velocity = fall velocity and convert to drop size using Atlas et al. (1973)

 Works good for rain! Easy to compare with Z from C-band radar, Parsivel etc.

Why does it not work for snow?

Size – fall velocity different for snow and has *much* higher uncertainty $P(v) \rightarrow P(D) \rightarrow N(D) \rightarrow Z, R$

Backscattering cross section different for snow and depends heavily on particle type

- >Z, R are biased for snow!
- ►Instead: calculate Z_e from Doppler spectrum P(v)

Doppler Spectrum cannot be used

Flow chart diagram

Get Ze

Meaning of background color:

Universit Applied to each time step and every height independently

Get Ze

Meaning of background color:

Universit Applied to each time step and every height independently

Get Ze

Meaning of background color:

Universit Applied to each time step and every height independently

Remove clutter

Universit Applied to each time step and every height independently

Resulting Spectra

Aliasing

Virga

