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Micro Rain Radar (MRR)

e Vertically pointing
e 24 GHz (12.4 mm)
« 30 range gates

° 30...200 m vertical
resolution

) FM-CW . Vi
¢ 50 mW, 25 W, 20 kg oaueny of ecevd signal \

frequency of transmitted signal —1 ™\

f 651’2

- F N N NN N |
. Developed for rain e | NN N

—*| |—-'—m II——— T ——J

st Institute for Geophysics and Meteorology

oh Maximilian Maahn, mmaahn@meteo.uni-koeln.de g
e University of Cologne ﬂ

7 ERAD 2012, Toulouse




Can we use MRRs for snowfall?
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Get Ze from MRR data

Integrated
Spectra (Z, W...)

Noise & Height corrected
Doppler Spectra

-

Raw Doppler
Spectra

Must not be used for snow,
because Z is derived from DSD
assuming only rain

Good performance > 3 dBz
Incomplete noise removal disturbs
smaller reflectivities. Correction of
aliasing effects needed (Kneifel et al.,2011)

Gives best results for snow with
proposed routine
— Sensitivity ~ -5 dBz
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New routine based on Raw
Doppler Spectra

Standard scheme  New scheme 1. Determine the most

significant peak including

g‘ e = = its borders  (modified
§ oo | I — : : Hildebrand and Sekhon, 1974)
I e - . Define remaining
= m?—&: __;:—j; spectrum as noise and
E mDET_Z é _ remove noise from peak
S = = %f\ = . Dealiase the spectrum,
T 0= —— ___/j\ because Nyquist range Is
— I — = small (using Ze - v relation by
i — N Atlas et al., 1973)
! . Calculate Z ., SNR, W

Doppler velocity [m/s] » Independent on type of

New MRR routine is available as open source at |
http://gop.meteo.uni-koeln.de/software/ hyd rometeor:
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Comparison with Cloud Radar

» Reference: MIRA35 35.2
GHz cloud radar

e Collocated
measurements January-
April 2012

e at UFS
Schneefernerhaus
(German Alps, 2650m)

e At=060s
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MRR Z [dBZ]

MIRA vs. MRR: Z

Proposed Routine

Standard Product

UFS Schneefernerhaus Jan-Apr 2012
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MIRA vs. MRR: Frequency by
altitude

MIRA35 MRR (new routine)

UFS Schneefernerhaus Jan-Apr 2012 UFS Schneefernerhaus Jan-Apr 2012
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MRR W [m/s]

MIRA vs MRR: W

Standard Product

Umrhmw Jan-Apr 2012
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Outlook: Application to MRR
measurements

Ny-Alesund (79 °N):
winter 2010/11
Longyearbyen, (78 °N):
winter 2010/11
Princess Elisabeth
station (72 °S):
summer seasons
2010,11 and 12
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Frequency by
altitude diagrams

Height [m]
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Conclusion

1) MRR standard products highly biased
for snow.

2) But, snow can be observed (> -5 dBz)
If the new scheme Is used.

3) MRR has potential for snowfall
climatologies
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Thank you for your attention

Thanks to ERAD for covering travel expenses!

Maahn and Kollias (2012): Improved Micro Rain Radar  Snow Measurements
Using Doppler Spectra Post-Processing,  submitted to AMT

New MRR routine is available at http://gop.meteo.un i-koeln.de/software/
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Back-up slides
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Comparison of sigma

' Schneefernerhaus 20120207
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Comparison with
Cloud Radar

» Reference: MIRA35
35.2 GHz cloud
radar

o January-April 2012
at UFS
Schneefernerhaus "
(German Alps) -
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Metek's (Indirect) approach for Z

Recorded Dopp|er Convert to DSD USing
Power Spectrum ~ Mie Theory 7 ~ Db R ~ D3

f

P(v) -~ P(D) > N(D) - Z,R

Assume Doppler velocity = fall velocity
and convert to drop size using
Atlas et al. (1973)

* \Works good for rain! Easy to compare
with Z from C-band radar, Parsivel etc.
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Why does it not work for snow?

Size — fall velocity

different for snow and Z~D°R~D?
has much higher not feasible for snow

uncertainty \
P(v) - P(D) - N(D) - Z,R
/

Backscattering cross section different
for snow and depends heavily on particle type

»Z, R are biased for snow!
» Instead: calculate Z ,from Doppler

sgectrum PSVZ
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Doppler Spectrum cannot be used

Noise is not properly removed from the

19/01/2012, 23:12
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Flow chart
diagram
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Noise Removal
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Get Ze
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Noise Remaoval Dealiasing
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Aliasing

Height [m] with unambiguous velocity range of 0 to 12 m/s
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3000

Percentage of Virga

2500

2000

1500

Height [m]

1000

500

30 40 50
Virga [%]

60

70

80

University of Cologne

28



