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(1) Motivation

We present a new methodology for data-based state and parameter estimation and results from its application to an ecological model. The method
has a strong theoretical justification; it is appropriate when the model is nonlinear and for non-Gaussian distributions of the state conditioned on
the observations; and it is able to estimate any number of parameters, including initial conditions and model error covariances. The ecological model
describes the evolution of plankton, nutrients, and organic matter in the upper ocean. It depends on a set of parameters that determine the specific
orowth rates of the individual concentrations, their limiting due to crowding, and their interaction, whether it is consumption of one by another, or
competition over a common resource. The true values of these parameters are rarely known precisely. Their estimation is essential to drawing accurate

inferences about past, present, and future ecological states.

(2) Implicit estimation
The model is a discrete time stochastic process
X = X1 + 7 (Xon—1, 0, t1) + VTG (Xin—1, 6, t 1) AW,
At a subsequence of the model steps, we observe a noisy function of the state
Y, = h[ X (67), 0%, 1] + VRD,,.

The unknown, true model parameters are the elements of the vector 6*.

Begin with a set {X(()i)} of initial conditions for the particles (i.e., samples), which have the initial pdf p(xg). For each particle, the implicit smoother

does the following

- D
1. Define the cost function 7 such that

P(Xo:m(k), 01y 1:x) o p(2o) exp(—=T ).

2. Minimize the cost function.
3. Sample a multivariate normal distribution about the minimum with the covariance matrix given by the inverse Hessian of the cost.

4. Weigh the particle by the ratio of the target pdf and proposal Gaussian.

The result is a set of weighted particles

{ngzn(k)? (9(1)7 w(Z)} ™~ p(XOm(k)7 0‘}’1]{)

(3) A simplified example

Consider the Lotka-Volterra equations for two species, a predator () and prey P, with the grazing term in Michaelis-Menten form:
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The equations have two types of invariant sets: a fixed point and a limit cycle. The fixed point is a center iff 8, = 5 = 0. Otherwise, it is a spiral.
We take as = 0, since the concentration of the prey limits the predator. In order to keep the solutions of equation (4) bounded, we constrain the sign

of the state and parameters. A description and the units of each is given in the table below.

Table 1: The elements of the state and parameters. The sign of each variable precedes it.

Description Units
(+)P, (4+)@ Concentration of prey, predator # per sq. meter
(4)01, (—)04 Specific growth rate of prey, predator # per day
(—)02, (—)f5 Density dependence (# per day) - (# per sq. meter) ™!
(—)03, (4+)8¢ Loss/growth due to grazing (# per day) - (# per sq. meter) ™!
(4)67 Inverse half-saturation of grazing (# per sq. meter) ™!

We use noisy measurements of a twin reference solution of the model with the true parameters to generate synthetic observations.
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(4) A realistic biogeochemical model

The full model (Spitz et al., DSR-II, 2001) has 11 state variables and
49 parameters. Solar irradiance and mixed layer depths are taken as the

monthly mean climatology.

Twin experiments, deterministic model

Fig. 3. Flowchart of the annual nitrogen cycle. Thicker

arrows indicate greater fluxes. The two exiting arrows

represent sinking out of the mixed layer, while the en-

tering arrow represents entrainment due to mixed layer

1. Monthly data gathered in situ given by the red boxes and arrows
in Fig. 3 and the sum of the green words, which is particulate or-

ganic matter (POM). The smoother with O(100) particles produces
parameter distributions comparable to Fig. 2a.

2. Just chlorophyll-a, global coverage every O(8) days with satellite-
based instrumentation. The quadratic aproximation overpredicts the
spread of the true cost (Fig. 4) and its eigenvectors do not line up
with the correct directional dependence (Fig. 5). Gaussian impor-
tance sampling is thus inefficient. To correct, with each sample z

update the Hessian such that

M1 = My + €, J(2) — K(2; H),

Hn_|_1 — eXp Mn_|_1,

where ¢,, = Cn~%, J is the true cost, and K its quadratic approx.
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Fig. 4. The cost function and its quadratic approxima-
tion along a scaled eigendirection of the Hessian. The
true cost diverges from the quadratic due to the impor-

tance of higher order terms.
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Fig. 5. Contours of the target density in two directions.

The x and y axis correspond to eigendirections of the

Hessian. Notice that the true cost varies in different

directions.
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(5) Conclusions

For a simplified example, the implicit smoother outperforms the estimates of SIR and EnKF'. It is also able to make accurate inferences about a realistic

biogeochemical model if there is sufficient data. When the data is chlorophyll only, the quadratic approximation of the cost severely overpredicts its

spread. This leads to confidence intervals on the estimates that are unnecessarily large, and can cause approaches that rely on Gaussianty like EnKF

to fail. We fix this deficiency by using a Robbins-Monro iteration to adaptively refine the Hessian each time we sample the proposal.
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(3 cont.) A simplified example

Table 1: Error statistics of 5000 trial estimates of log —6, for three different ensemble sizes and four different methods: the implicit smoother, the implicit filter, SIR, and EnKF.
The numbers after the + sign indicate the standard deviation of the statistics computed by resampling with replacement from the sample errors.

N, Mean Median

RMS

IQR

Implicit smoother

24 —0.0351 == 0.0133  —0.0007 = 0.0028
240 —0.0005 = 0.0088 0.0068 £ 0.0032
2400 —0.0079 = 0.0119 0.0045 = 0.0033

0.9310 == 0.1510 0.2540 = 0.0050
0.6137 £0.0292 0.2495 4= 0.0055
0.8210 = 0.1332 0.2513 = 0.0058

SIR

24 —0.3171 == 0.0260 —0.0498 = 0.0175
240 —0.1554 =0.0084 —0.0125 = 0.0020
2400 —0.0057 £ 0.0038 0.0009 = 0.0011

4.1652 == 0.1556  3.0139 £ 0.0280
1.8577 = 0.0628 0.5616 &= 0.0041
0.8514 £ 0.0252 0.2868 4= 0.0019

EnKF

24 —0.1277 = 0.0116 —0.0017 4= 0.0039
240 0.0024 = 0.0037 0.0025 £ 0.0011
2400 0.0136 = 0.0036 0.0048 4= 0.0010

1.8327 £0.0692 0.7731 & 0.0077
0.8314 =0.0170 0.2988 == 0.0019
0.7979 = 0.0178  0.2667 &= 0.0017

Fig. 2. Empirical representation of (a) the marginal
p(02]y1..) of the target density and (b) the rank his-
togram of the weights of 24, 000 samples. The Gaussian
fit has the same mean and standard deviation as the

samples.
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