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Research Summary: Data Assimilation (DA)

1. Targeting observations in DA
•Strategy locates observations at points of highest en-

semble variance to minimize state and forecast errors.
2. Convergence of DA scheme
•Determining convergence rates for targeting strategy

versus randomly located observations.
•Vary fixed quantities to determine effect on conver-

gence of DA scheme.
3. Estimating model parameters with DA
•Accurately tuning fixed parameters with novel method.

Two Model Problems

1. Front solution to Burgers’ equation
•Estimating an exact non-dissipative, traveling wave front

solution to Burgers’ equation:

ut + uux = νuxx.

•Random initial ensembles: Brownian motion.
2. Lorenz-96
•Toy model of a theoretical weather state at N = 40 points

on a latitude circle with cyclic boundary conditions:
∂xj
∂t

= (xj+1 + xj−2)xj−1 − xj + F,

xj±N = xj.

•Nonlinearity simulates advection and conserves energy.
•Linear terms dissipate the total energy.
•F represents external forcing; strongly determines

chaotic properties of the model.

Local Ensemble Transform Kalman Filter (LETKF)

•Time efficient, accurate ensemble DA method.
•Low-rank filter capturing current covariance model error.
•Localizes analysis about each state location.
1. Reduce spurious correlations for distant positions.
2. Combined analysis explores larger dimensional space.
•Use with targeting strategy and parameter estimation.
•Method: Vary localization window, number of obser-

vations, and ensemble size to determine effect these
quantities have on the convergence of LETKF.

Results: Targeting Observations

•Largest ensemble variance targeting strategy ‘skill-
ful’ in estimating/forecasting state for both models.

•Def (Lorenz): Skillful: Method beats random locations.
•Doubling number of observations or size of localiza-

tion window halves the DA convergence time for both
Burgers’ and Lorenz-96 with small forcing (F < 2).

1. Conjecture: For non-chaotic systems, these halved
rates of convergence hold.

2. Conjecture: Rates of convergence scale to the magni-
tude of chaoticity for Lorenz-96 with larger forcings.

Results: Parameter Estimation

•Novel method: LETKF+sEnKF.
•LETKF as usual to update the analysis state.
•Separately use a non-localized ensemble Kalman filter

(EnKF) on augmented ensemble of states (x, p).
•Above p is a vector of forecasted parameter values.
•Estimating Burgers’ diffusion term, forcing in Lorenz-96.
•LETKF+sEnKF parameter estimation is successful for

both models.

Future Work

Construct rigorous theorems suggested by these results.
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