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Abstract

Methods for the combined use of mathematical models
and observational data for studying and forecasting the
evolution of natural processes in the atmosphere and
environment are presented. Theoretical background for
the methods are variational principles for estimation of
functional defined on a set of state functions, parame-
ters and sources of processes models. In the approach
mathematical models with allowance for different kinds
of uncertainty are considered as constraints to the class
of state functions.

Modeling technology outline [1]

• Form an informative base of orthogonal base vectors (OBV) from
historical meteorology data.

• Build typical scenarios taking into account component variability.
• Asses risks for the typical scenarios.
• Assimilate incoming data.

Pollution risk assessment case study

Fig. 2: Lake Baikal sensitivity function [1] to cumulative emissions of
climatic (for 56 years) July (upper) and December (lower).

The sensitivity function has a 4D space-time structure. Its values show
which part of the total emission from the sources may enter into the re-
ceptor zone. The greater the value of sensitivity function in a grid point,
the more the risk to get the input into the quality functional from the source
situated in this point.

Real-time data assimilation case study

Considered in [4] real-time data assimilation algorithm is a special case
of general data assimilation scheme with splitting method applied and

~φ = φj+1, Λt = Id/τ, fa = f̄a + φj/τ.

where φj is the state function on j-th timestep, f̄a are a priori sources
and τ is the timestep.

.
Fig. 3: Data assimilation result (left) for artificial data (right). Four fixed
observers, circular wind field and zero value a priori data on sources.
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Orthogonal vector spaces for long-term environmental studies [3]

We suggest a methodology for a quantitative description of the behavior of a dynamic system for a long time interval in a generalized form. Following it,
the necessary information, intended to be used for the construction of scenarios, is extracted from a database containing measured and/or calculated
data on hydrodynamic state functions. Calculations are made with the help of a method of orthogonal decomposition of functional spaces formed by
multivariate, multidimensional state functions from a database. A two-level data structuring with allowance for given goal criteria is firstly produced. This
provides an efficient realization of the methodology practically without restrictions upon the amount of data and component content of the database.
The targeted structuring is just the element which differs the methodology proposed from the traditional approaches to data decomposition.
The NCEP/NCAR reanalysis database for 56 years (1950-2005) is used to demonstrate the possibilities of the methodology. The method of orthogonal
decomposition results in the subspaces which correspond to the processes on different scales: from global climatic processes to weather noises. These
subspaces serve as informative bases for analysis of the climatic system behavior. Moreover, the subspaces are key elements for the construction of
deterministic-stochastic scenarios to obtain an atmospheric background for problems of environment protection and design, ecological risk/vulnerability
assessment and control, etc.

Fig. 1.a: One of 62 fragments corresponding to the 15th day of the first OBV for 500-hPa geopotential hight (left) and wind velocities (center),
eigenvalues of Gram matrix for 500-hPa geopotential height(right) for monthly vectorized data corresponding to January for 1950-2005 years.

Fig. 1.b: One of 62 fragments corresponding to the 15th day of the first OBV for 500-hPa geopotential hight(left) and wind velocities (right) monthly
vectorized data corresponding to June for 1950-2005 years. Seasonal variability of the information index of the OBV-1.

Model
4D models describing the processes of heat, moisture, radiation, and pollutants transport and transformation in the atmosphere have the generic
structure:

L(φ,Y) ≡ ∂ρφ

∂t
+ divρ(φu− µgradφ) + ρ((Hφ)− fa − r) = 0,

φ0 = φ0
a + ξ, Rbound(φ) = ga + ε, Y = Ya + ζ.

Incoming measurement data is connected with the state function with measurement operator W

Ψm = [W(φ)]m + η,

Here φ is model state function, {ρ, u, µ} = Y are model parameters that can be composed of extracted OVB, H is transformation operator, fa, ga, φ0
a

are a priori values of sources and initial data, r, ξ, ε, ζ, η are flexibility (uncertainty) functions introduced in the rigid model structure.

Variational framework
The Model is represented in the weak form with introduction of the adjoint function

I(φ, Y, φ∗) ≡ (L(φ, Y ), φ∗) .

With the functional to be estimated

Φk(φ) =

∫
Dt

Fk(φ)χk(x, t)dDdt = (Fk, χk) ,

all structures are aggregated to an augmented functional and then the latter is discretized with the use of splitting and decomposition techniques
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Within the framework, different tasks can be accomplished.

Data assimilation (α0 = 0, α4 = 0, ε ≡ 0, α5 = 0, ζ ≡ 0)

Data assimilation is the process that improves forecast with the use of incoming measurement data. The general algorithm for data assimilation [2] has
the form

∂Φ̃hk

∂~φ∗
≡ Λt~φ+Gh(~φ, ~Y )− ~f − ~r = 0, φ0 = φ0

a + ξ. (Direct/Forward problem)
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, ~φ∗k |t=t̄ = 0. (Adjoint problem)
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Here Λt is a time derivative discretization and Gh is the discretization of transport-diffusion-reaction operator. Assimilation window is a parameter
of the data-assimilation procedure. Real-time data assimilation can be carried out when assimilation window is equal to one time step for model of
processes.

Receptor territory pollution risk assessment (α1 = 0, α2 = 0, α3 = 0, ξ ≡ 0, α4 = 0, ε ≡ 0, α5 = 0, ζ ≡ 0)

To assess the risk we need the quantity values of the sensitivity functions of the goal functional describing an accumulated pollution of the receptor
territory WRT the variations r of the sources fa which are explicitly included in the model description. The algorithm for calculation of the sensitivity
function is

δΦ̃hk

∂~φ∗
= 0,

δΦ̃hk

∂~φ
≡ (Λt)

T ~φ∗k +AT (~φ, ~Y )~φ∗k +
∂

∂~φ
(α0Φhk(φ)) = 0, δΦ̃hk =

(
δΦ̃hk
∂r

, δr

)
.


