

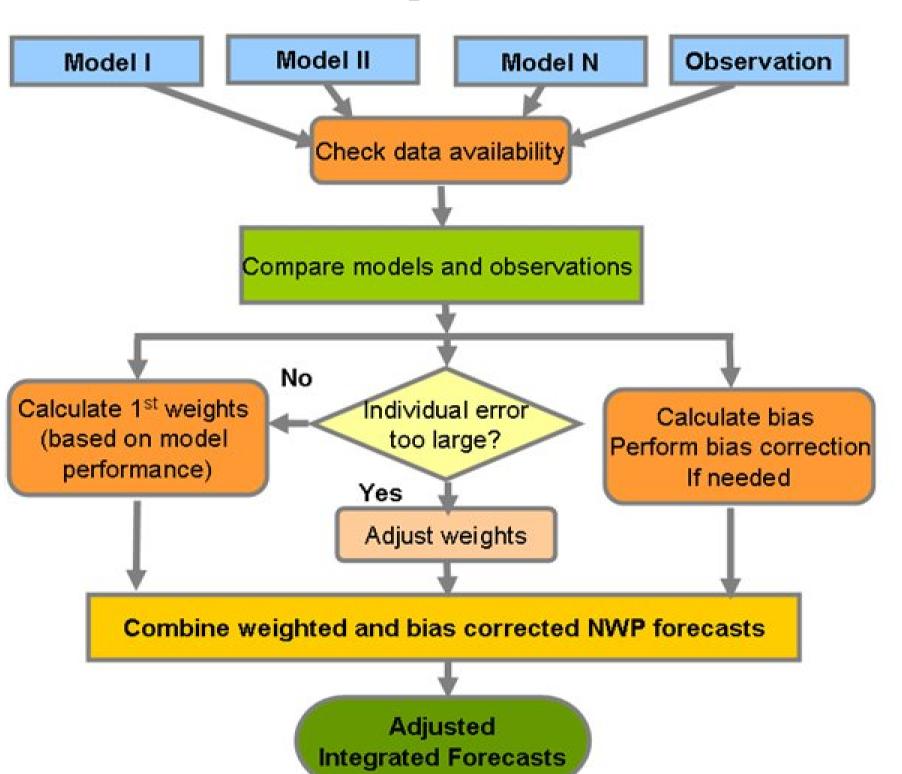
Analysis of Integrated Forecasts from Different Combinations of NWP Models

Laura Huang¹, George Isaac¹, Grant Sheng²

¹Cloud Physics and Severe Weather Research Section, Environment Canada, Toronto, Ontario, M3H 5T4, Canada

²Faculty of Environmental Studies, York University, Toronto, Ontario, M3J 1P3, Canada

Background


- General lack of numerical models specifically designed and developed to do nowcasting
- Nowcasting is often based on one or several available Numerical Weather Prediction
 (NWP) models regardless of the spatial resolution for a particular location
 - NWP models originally developed for short to medium weather forecasts with lead times greater than 12 hours
 - Major limitations of using NWP models for nowcasting
 - coarse spatial resolution
 - spin-up
 - cannot be updated frequently
- A weighting, evaluation, bias correction and integrated system (WEBIS) has been developed at EC to generate integrated weighted forecasts (INTW) from several NWP models for nowcasting (up to 6 hrs)

Integrated Model Generation

Major Steps of INTW Generation

- Data pre-checking defining the available NWP models and observations
- Extracting the available data for specific variable and location
- Calculating statistics from NWP model data, e.g. MAE, RMSE
- Deriving weights from model variables based on model performance
- Defining and performing dynamic and variational bias correction
- Generating Integrated Model forecasts

Flowchart of Integrated Model Generation

Data Sources Used in This Study

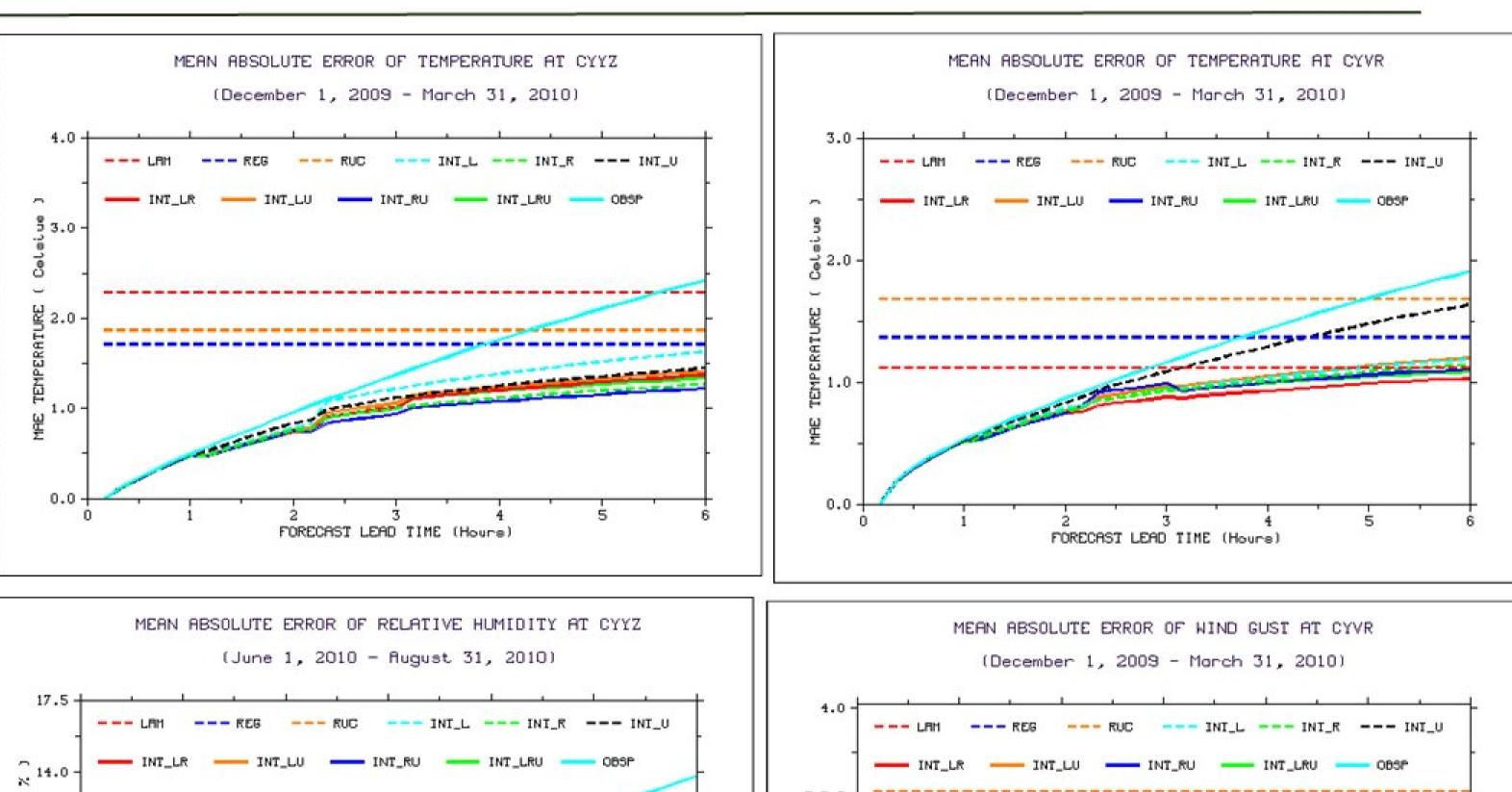
Nome	D 4!	Resolution		Data franc	
Name	Run times	Spatial	Temporal	Data from	
GEM Regional (REG)	0, 6, 12, 18 Z	15 km	7.5 min	CMC of EC	
GEM LAM east (LAM)	12 Z	2.5 km	5 min	CMC of EC	
GEM LAM west (LAM)	9, 21 Z	2.5 km	1 min	CMC of EC	
RUC	every hour	13 km	1 hour	NOAA/NCEP	
OBS	1 min	point	1 min	Airports	

Verification of NWP Models

MAE from 3 NWP models for different variables in winter at CYYZ

Variables	REG	LAM	RUC	Units
Temperature	1.7	2.3	1.9	deg C
Relative humidity	10.5	9.0	12.1	%
Wind Speed	1.6	1.2	1.4	m/s
Wind Direction	19.3	20.6	23.3	deg
Wind Gust	2.3	2.4	1.7	m/s

NWP Model with minimum MAE at CYYZ and CYVR


(Winter: 2009.12.01- 2010.03.31, Summer: 2010.06.01- 2010.08.31)

Variables	CYYZ		CYVR	
	Winter	Summer	Winter	Summer
Temperature	REG	RUC	LAM	REG
Relative humidity	LAM	LAM	LAM	LAM
Wind speed	LAM	RUC	LAM	LAM
Wind direction	REG	RUC	REG	REG
Wind gust	RUC	RUC	LAM	REG

References

- Huang, L.X, Isaac, G.A, and Sheng, G., 2012: Integrating NWP forecasts and observation data to improve nowcasting accuracy. Weather and Forecasting, 27, 938-953
- Huang, L.X, Isaac, G.A, and Sheng, G., 2012: A new integrated weighted model in SNOW-V10: verification of continuous variables. Pure and Applied Geophysics, DOI: 10.1007/s00024-012-0548-7
- Huang, L.X, Isaac, G.A, and Sheng, G., 2012: A new integrated weighted model in SNOW-V10: verification of categorical variables. Pure and Applied Geophysics, DOI: 10.1007/s00024-012-0548-6
- Isaac, G.A., and co-authors, 2012: The Canadian airport nowcasting system (CAN-Now). Meteorological Applications. DOI: 10.1002/met.1342.

Verification of Model Performance at 6 Hour Lead Time

In the graphs:

- INT_L INTW based on LAM
- INT_U INTW based on RUC
- INT_LU INTW based on LAM and RUC
- INT_LRU INTW based on LAM, REG and RUC

FORECAST LEAD TIME (Hours)

- INT_R INTW based on REG
- INT_LR INTW based on LAM and REG

FORECAST LEAD TIME (Hours)

- INT_RU INTW based on REG and RUC
 OBSP Observation persistence
- Comparison of model performance from all models

Site	Season	Temperature	Relative Humidity	Wind Speed	Wind Direction	Wind Gust
CYYZ	winter	RU / Y*	LR/Y	LU/Y*	RL / N	UR/Y
	summer	RU / Y*	LU/Y*	LR/ Y*	UR / Y*	UR/ Y*
CYVR -	winter	LR/Y	LR/Y*	LR/Y*	RL/N	LR / Y*
	summer	LR/Y	LR/Y	LR/Y*	RL / Y*	RU / Y*

In the table:

- L, R and U represent models of LAM, REG and RUC respectively
- The 2 optimal NWP models (with smaller MAE than the 3rd one) are listed and the 1st one has the smallest MAE
- Y means integrated model based on the 2 optimal models leading to the smallest MAE among all models, N means integrated model (INT_LRU) having the smallest MAE
- * means integrated model (INT_LRU) based on 3 NWP models having the similar MAE with the integrated model using 2 optimal models
- The MAE from INT_LRU are very close to the model using 2 optimal NWP models without *

Analysis of Model Performance

- NWP model performance varies by variable, time and location
- All integrated models have smaller MAE than raw NWP models
- The integrated models based on more than one model have smaller MAE than integrated model based on only one NWP model
- The integrated models based on 2 optimal models lead to the smallest MAE for most of cases
- For same variable, there are no big differences of MAE among models based on either two "*optimal*" NWP models (2 with smaller MAE than 3rd one) or three NWP models
- However, it cannot be predetermined which two models will be the optimal ones
 when making a real time forecast. Thus it is best to use all available models

Summary

- Integrating multiple forecasts can increase nowcasting accuracy
- Dynamic weighting and variational bias correction are the key methods for the improvement
- High frequency observations and NWP models are critical for deriving integrated forecasts
- Integrated model can provide better forecasts than individual NWP models for the first couple of hours regardless of selected variables and locations
- It is better to use as many NWP models as possible to generate integrated forecasts when NWP model performances are unknown