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1. Introduction

This study explores if AXBT temperature data collected during
typhoon Fanapi can be used to improve the drag coefficient
parametrization at high wind speeds, namely by constraining the
drag saturation (Cmax

D ) and the corresponding wind saturation
speed (Vmax) values, as well as in identifying if CD decreases for
wind speeds greater than Vmax. This parameter estimation prob-
lem is solved via a Bayesian inference framework where the pos-
terior parameter distributions are obtained using Markov Chain
Monte Carlo sampling. The prohibitive cost of the latter step, re-
quiring O(106) HYCOM realizations, is avoided by building a faith-
ful surrogate using a 67-member Polynomial Chaos (PC) based
ensemble, and by sampling the latter.

2. Wind Drag Parameters

The HYCOM default drag parametrization CD is perturbed using
the control variables α, Vmax and m:

C ′D =

{
αCD for V ≤ Vmax

α [CD + m(V − Vmax)] for V > Vmax
(1)

CD = C0 + C1(Ta − Ts), Ci = ai,0 + ai,1Ṽ + ai,2Ṽ
2 (2)

Ṽ = max(Vmin, min(V, Vmax) ) (3)

where V is the wind speed at 10m height, Ta and Ts are the
air and sea surface temperature, and the ai,m are coefficients
obtained from a quadratic fit to COARE 2.5. The default (HY-
COM) and perturbed parametrization (black and blue) are com-
pared to observational data (symbols) in figure 1. The pertur-
bations are within the envelope of the observational data scat-
ter. The control variables are assumed uniformely distributed
over the range 0.4 ≤ α ≤ 1.1, 25 ≤ Vmax ≤ 35 m/s, and
−3.8 × 10−5 ≤ m ≤ 0, and this is represented by three stochas-
tic variables |ξ1,2,3| < 1 that will figure in the PC expansion.
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Figure 1: Drag coefficient vs wind speed

3. Atmospheric Forcing and AXBT data

Fanapi (Sep 12–Sep 20 2010) developed and intensified
within a major field campaign, the Impact of Typhoons on
the Ocean in the Pacific (ITOP). AXBT data collected along
Fanapi’s track revealed the near surface vertical ocean tem-
perature profile. The data shows a sea surface tempera-
ture of 29◦C and a surfaced mixed layer 50 meter deep be-
fore the storm and a cooling of 1◦C–2◦ and a deepening
of the mixed layer to a depth of 100 m after the storm.
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A triply nested (12, 4 and 1.3 km) WRF model was used to obtain
high-resolution space-time surface wind fields with which to force
HYCOM. WRF reproduces Fanapi’s track very well but underesti-
mates its intensity a bit for the period Sep 14–17; overall the WRF
data is more than adequate for our purpose.

4. Bayesian Inference

Bayes conditional probabilities applied to our problem is:
p(θ|T ) ∝ p(T |θ) p(θ) where T represent the AXBT data, θ =
{α, Vmax,m, σ

2}), the control parameters supplement with the
variance between observed and simulated temperatures, and
p(x) is the probability density function. We assume that the ob-
servations are independent and that the error between the ob-
servation and simulated temperatures is normally distributed with
mean zero and variance σ2; the likelihood is then

p(T |θ) =

N∏
i=1

1√
2πσ2

exp

(
−(Ti −Mi)

2

2σ2

)
(4)

where Mi is the simulated (see below) temperature, and N is the
number of observations. The variance σ2 is unknown a priori ;
thus we treat it as a hyper parameter and add it to the list of con-
trol parameters. The prior is given by p(θ) = p(α)p(Vmax)p(m)p(σ2)
where α and Vmax and m have uniform pdfs over their ranges and
σ2 is assumed to have a Jeffreys prior (i.e. p(σ2) = 1

σ2 forσ2 > 0,
and 0 otherwise.

5. The PC surrogate and its errors

The hycom temperature is expanded in a series:

T (x, t, ξ) =

K∑
k=0

T̂k(x, t)Ψk(ξ), T̂k =
〈Ψk, T 〉
〈Ψk,Ψk〉

, 〈Ψk, T 〉 =

∫
ΨkTdξ

where Ψk are orthogonal Legendre polynomials in the stochastic
variables ξ and T̂k are the (K + 1) series coefficients. A projec-
tion yields the coefficients. The mean temperature is given by
the term T̂0 and the variance by

∑K
k=1 T̂

2
k . The multi-dimensional

integrals in the stochastic space are approximated with adaptive
Smolyak quadrature so that the coefficients can be expressed as
matrix-vector operations of the form T̂k =

∑Q
q PkqT (ξq) where Q

is the number of quadrature points. Evaluating this product re-
quires Q realizations of HYCOM. The quadrature order Q was
high enough to evaluate the integrals accurately; furthermore, the
number of terms retained in the series K was monitored to mini-
mize the error between the series approximation and its left hand
side. This spatial distribution of the relative error is shown in fig-
ure 3: the errors peak at 1% near the base of the mixed layer.
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Figure 3: Relative normalized error between realizations and the
corresponding PC surrogates at different depths at time 0000
UTC 18 Sep.
The mean temperature and standard deviation over a small

monitoring area located on the storm track are shown in
figure 4. It shows a cooling of about 2◦C that ex-
tends to about 50 m. Furthermore, the uncertainty is
confined to the upper 100 m of the water column.
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Figure 4: Contours of mean temperature (left) and its standard
deviation (right). The magenta line indicates the typhoon’s pas-
sage time over the monitoring station.
The surrogate can be used to construct the full response sur-

face of the temperature as a function of the control param-
eters. Figure 5 shows the time evolution of this response
surface as contours; the strong dependency on α is clear
from the packed contour lines near α ∼ 1, whereas the de-
pendency of SST on Vmax weakens as the storm passes.
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Figure 5: SST response surface as function of α and Vmax, and
for fixed m = 0. Plots are for different days.

6. Posterior Distributions
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Figure 6: Prior and posterior distributions for the drag parameters
(top) and posterior distributions of the variance between simula-
tions and observations on different dates (bottom). MAP values
of the posterior distributions are also indicated.

0.98 1 1.02 1.04 1.06
20

25

30

35

 

 

V
m

a
x
 (

m
/s

)

α

5

10

15

20

25

0.98 1 1.02 1.04 1.06
20

25

30

35

 

 

V
m

a
x
 (

m
/s

)

α

5

10

15

20

25

0 10 20 30 40 50
0.5

1

1.5

2

2.5

V (m/s)

C
D

×
1
0

3

 

 

09/12 − 09/13
09/13 − 09/14
09/14 − 09/15
09/15 − 09/16
09/17 − 09/18

Figure 7: Left: joint posterior distribution of α and Vmax; cen-
ter: joint posterior of α and σ2, generated for 17 Sep- 18 Sep.
right: Optimal drag coefficient CD using MAP estimate of the
three drag parameters. The symbols refer to AXBT data used
in the Bayesian inference.

7. Conclusion

•Cmax
D ≈ 2.3× 10−3, Vmax ≈ 34 m/s, and m uninformative

• AXBT can be useful to constrain wind drag parameters
• PC-based surrogate accurate and essential for Bayesian infer-

ence
•Need to consider other air-sea interaction and use a coupled

ocean-atmosphere model
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