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5 Channel merging Superchannel techniqueWhile optimum planning of satellite experiment it is necessary to take into account the physical nature of measured values. The idea
of an increase of the spectral resolution to obtain the high precision of retrieval leads to decreasing of the signal/noise ratio in such

5. Channel merging – Superchannel technique 
of an increase of the spectral resolution to obtain the high precision of retrieval leads to decreasing of the signal/noise ratio in such
"narrow" channels. The alternative idea is an “optimal” merging of radiative energy in the various (correlated) spectral ranges in a number of First step – spectral information analysis:narrow channels. The alternative idea is an optimal merging of radiative energy in the various (correlated) spectral ranges in a number of
“superchannels”. As its was shown1, such methods can exceed a "complete" experiment of high resolution in an information content.
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In this work the techniques of an optimum choice are considered of spectral channels with the fixed and variable widths. The following
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We resolve eginvalues problem for spectral covariance matrix to obtain the number of available
independent information components in spectra:
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2 2methods of the optimization and optimal planning were employed for a remote sensing satellites experiments: DRM2(analysis of Data
Resolution Matrix) DRM(SVD)3 Jacobians Iterations (selection of the satellite channels is defined by Entropy Reduction)4 superchannel
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Resolution Matrix), DRM(SVD)3, Jacobians, Iterations (selection of the satellite channels is defined by Entropy Reduction)4, superchannel
technique (spectral channel with variable width - based on maximizing determinant of Fisher’s information matrix)5.
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technique (spectral channel with variable width based on maximizing determinant of Fisher s information matrix) .
The ”best linear estimate” method and the “variational” technique were employed for the inversion of measurement data by the Second step spectral intervals merging:
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channels, obtained by various selection techniques. The atmospheric temperature and humidity profiles was retrieved.
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Second step – spectral intervals merging:

The retrieval error was calculated for the data of different spectral resolution for those channel selection techniques. We introduces new "superchanels", which is obtained by spectral intervals merging:

M NM N MY yP   
Instrument simulation – forward problem The elements p of matri P is ether 0 or 1 sho s hether incl de inter al j to s perchanel i

M NM N My 

1

 
Instrument simulation forward problem The elements pji of matrix PMxN is ether 0 or 1, shows, whether include interval j to superchanel  i. 
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g   - instrument error. To find the matrix PM N we are use iterational algorithm which start from some initial nondegenerate set of scales:i j

Monochromatic radiation:
To find the matrix PMxN we are use iterational algorithm which start from some initial nondegenerate set of scales:
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channels) Modeling instrument specifications:
- Operating range: 650 - 900 см-1

Atmospheric parameters retrieval inverse problem
Operating range: 650 900 см ,

-1210- 1650 см-1, 817-822 см-1

Atmospheric parameters retrieval  – inverse problem
 

,
- Spectral resolution ~ 0.25 см-1

- sea surface temperature, atmospheric temperature and humidity profiles  0 , ,T qx T
  - Accuracy (NEdT)~ 0.3 K  

(corresponding to IASI (8461 channels)
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  1 • Non-linear (variational). Minimization of the cost function: Temperature retrieval
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- predictor covarianceS x Humidity retrieval accuracies (23 partial channels)2  predictor  covariance xS x
• 3000 samples were taken from the ECMWF Databank for calibration and 300 for verification the satellite

Humidity retrieval accuracies (23 partial channels)
• 3000 samples were taken from the ECMWF Databank for calibration and 300 for verification, the satellite 

measurements were simulatedmeasurements were simulated.
• Linear Reduction estimate is taken as the a priori estimate for variational technicsLinear Reduction estimate is taken as the a priori estimate for variational technics.
• x after normalization was projected at the PC(EOF) subspace• x after normalization was projected at the PC(EOF) subspace.
• Jacobean was calculated analytically for the modified Newtonian minimization• Jacobean was calculated analytically for the modified Newtonian minimization. 

Methods of Chanel selectionMethods of Chanel selection
1 DRM 2 SVD(DRM) 3 Jacobeans1.DRM 2.SVD(DRM) 3.Jacobeans  

f  1 1 1 1Values of the diagonal  1 1 T2 2A U VSVD S    
1 1
2 2A xJ S   SVD Variable C l i d tiRetrieval accuracies

elements of a DRM matrix is a  A  U VxSVD S  x

h line of the Jacobean which
DRM SVD 

(DRM) Jacobian Iterative Variable 
width Conclusions and perspectives:Retrieval accuracies 

(23 channels)
criteria of a channel Cut  nosy components: h - line of the Jacobean which
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Error of T0, К 0.41 0.41 0.41 0.41 0.41 •The numerical experiments showed the advantage of
usefulness.
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Error of T0, К 0.41 0.41 0.41 0.41 0.41
Error of T(z) К 1.78 1.78 1.73 1.64 1.39

The numerical experiments showed the advantage of
the method 5 (Channel merging), due to integration of
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Channel selection criteria:
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Error of T(z), К 1.78 1.78 1.73 1.64 1.39
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Channel selection criteria:
line h is selected that has a maximum

R Error of q(z), 
g/kg 0.83 0.83 0.81 0.79 0.68
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•The efficiency of the method increases for better
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of the ratio of the Error of T0, К 0.32 0.32 0.32 0.32 0.32 spectral resolution .
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g/kg 0.82 0.82 0.78 0.74 0.64ii iiii with spectral intervals merging.
4.Iterative method    
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At each iteration the a posteriori covariance matrix is update: 1 1
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