Representing Ensemble Covariances in Variational
Assimilation with a Diffusion Operator

CEREAC)

e We consider the problem of estimating the N x NN background-error co-
variance matrix (B) from an ensemble of N, < N error realizations.

e We consider localized, ensemble-based B models suitable for application
with conjugate gradient (CG) algorithms in variational data assimilation.

o Let {€, = x, — X0} denote an ensemble of p =1,..., IV, state error real-

1zatlons with respect to an unperturbed control member x.
o [et 6;3 = €, — € where € = Zév:el €,/ N,, and By, = X' X' where
X' = (€,..., e?v) /v/Ne — 1.

e We define the sample correlation matrix

C.., = D—1/2 X/ X/T D—1/2 _ }/i/ (X!)T (1)
where D = DY/2D2 = diag(Buy,) and X' = D1/2X/ = (€l,.... €y).

Method 1: Covariance modelling using Diffusion

e Represent the covariance matrix of the analysis variables as
B, =D/ Cy D'’

where Cyis is a full-rank correlation matrix.

e Represent the correlation matrix as (|6])

Cu= NV2LWIN?

where L is the solution operator of Eq. (2), W = diag(metric coefficients)
and N = N2 N2 = diag(normalization factors).

e Compute the local diffusion tensor from (|7])

1 —1
i — o (@) (3)

where H (x), the correlation Hessian tensor, can be estimated from (|4])

Hsam(CE) = Ze V/E\];(il?) (VE;(:E))T (4)
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Idealized Example involving Anisotropic and
Inhomogeneous Correlations
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Raw correlations with NV, = 10
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Estimated correlations using Method 1
with N, = 10

Estimated correlations using Method 2
with N, = 10 and o = 2.
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Correlation Operators based on Implicit
Diffusion

e Consider the operator 15 Cty 1 on RY defined by the solution of an M-step
implicitly-formulated diffusion equation:

(1-V-&V)"Y(x) =d(z) (2)

e For constant K, the solution is a convolution of {D\(m) with a covariance
function from the Whittle-Matérn family (|3|, |7]):

cq(r) ~ M —d)2 KM_d/Q(r)

where Kj;_4/9(r) is the modified | | ' =

—M=4

Bessel function of the second kind, 08 — =10
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Method 2: Localization using Diffusion

e A common way to localize covariances in the EnKF is to compute the
Schur (element-by-element) product o of the sample correlation matrix

Correlation

(1) with a prescribed localized correlation matrix Gy,

B, = DY?[C. 0 Co] D2 (5)

e A more convenient form of Eq. (5) for CG is (|2])

B, =D"? |} D¢ Cy.Dg | DY (6)

where D, = diag(e,).
e The diffusion operator Cg;s can be used to define Cy,. in Eq. (6).

e The localization function can be made adaptive by setting the diffusion
tensor in Cj. = Cgyir t0 AKgan Where Kg,y, is estimated from Eqs (3)-(4)
and v > 1.

e Method 1 requires the estimation of O(/N) diffusion tensor elements for
each of the analysis variables and one application of Cgy; per CG iteration.

e Method 2 can be implemented with simpler (e.g., non-adaptive) diffusion
operators, has greater flexibility for specifying multivariate covariances,
but requires N, applications of Cy;; per CG iteration.

e Spatial filtering of the variances and tensor elements can help reduce the
effects of sampling error ([1]).

e Hybrid formulations that combine B; and B, are being considered for the
NEMOVAR ocean data assimilation system ([5]).
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