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Context

•We consider the problem of estimating the N ×N background-error co-

variance matrix (B) from an ensemble of Ne ≪ N error realizations.

•We consider localized, ensemble-based B models suitable for application

with conjugate gradient (CG) algorithms in variational data assimilation.

Definitions

•Let {ϵp = xp − x0} denote an ensemble of p = 1, . . . , Ne state error real-

izations with respect to an unperturbed control member x0.

•Let ϵ′p = ϵp − ϵ where ϵ =
∑Ne

p=1 ϵp/Ne, and Bsam = X′X′T where

X′ =
(
ϵ′1, . . . , ϵ

′
Ne

)
/
√
Ne − 1.

•We define the sample correlation matrix

Csam = D−1/2X′X′TD−1/2 = X̂′ (X̂′)T (1)

where D = D1/2D1/2 = diag(Bsam) and X̂′ = D−1/2X′ =
(
ϵ̂ ′
1, . . . , ϵ̂

′
Ne

)
.

Correlation Operators based on Implicit
Diffusion

•Consider the operator ψ̂ Cdif7−→ ψ onRd defined by the solution of anM -step

implicitly-formulated diffusion equation:

(1−∇ · κ∇)M ψ(x) = ψ̂(x) (2)

•For constant κ, the solution is a convolution of ψ̂(x) with a covariance

function from the Whittle-Matérn family ([3], [7]):

cd(r) ∼ rM−d/2KM−d/2(r)

where KM−d/2(r) is the modified

Bessel function of the second kind,

and

r =
√

(x− x′)Tκ−1 (x− x′).

Method 1: Covariance modelling using Diffusion

•Represent the covariance matrix of the analysis variables as

B1 = D1/2Cdif D
1/2

where Cdif is a full-rank correlation matrix.

•Represent the correlation matrix as ([6])

Cdif = N1/2LW−1N1/2

where L is the solution operator of Eq. (2), W = diag(metric coefficients)

and N = N1/2N1/2 = diag(normalization factors).

•Compute the local diffusion tensor from ([7])

κ(x) =
1

2M − d− 2
H−1(x) (3)

where H(x), the correlation Hessian tensor, can be estimated from ([4])

Hsam(x) =

Ne∑
p=1

∇ϵ̂ ′
p(x)

(
∇ϵ̂ ′

p(x)
)T
. (4)

Method 2: Localization using Diffusion

•A common way to localize covariances in the EnKF is to compute the

Schur (element-by-element) product ◦ of the sample correlation matrix

(1) with a prescribed localized correlation matrix Cloc:

B2 = D1/2 [Csam ◦Cloc]D
1/2. (5)

•A more convenient form of Eq. (5) for CG is ([2])

B2 = D1/2

 Ne∑
p=1

Dϵ̂ ′
p
ClocDϵ̂ ′

p

D1/2 (6)

where Dϵ̂ ′
p
= diag(ϵ̂ ′

p).

•The diffusion operator Cdif can be used to define Cloc in Eq. (6).

•The localization function can be made adaptive by setting the diffusion

tensor in Cloc = Cdif to ακsam where κsam is estimated from Eqs (3)-(4)

and α > 1.

Idealized Example involving Anisotropic and
Inhomogeneous Correlations

True correlations at selected points

Raw correlations with Ne = 10 Raw correlations with Ne = 100

Estimated correlations using Method 1
with Ne = 10

Estimated correlations using Method 2
with Ne = 10 and α = 2.

Remarks

•Method 1 requires the estimation of O(N) diffusion tensor elements for

each of the analysis variables and one application ofCdif per CG iteration.

•Method 2 can be implemented with simpler (e.g., non-adaptive) diffusion

operators, has greater flexibility for specifying multivariate covariances,

but requires Ne applications of Cdif per CG iteration.

•Spatial filtering of the variances and tensor elements can help reduce the

effects of sampling error ([1]).

•Hybrid formulations that combine B1 and B2 are being considered for the

NEMOVAR ocean data assimilation system ([5]).
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