

R. Chandrasekar, Deepak Subramani, K.Srinivasa Ramanujam, C. Balaji

Abstract

A new ensemble based algorithm has been developed that assimilates the vertical rain structure retrieved from combined microwave radiometer and radar measurements in a regional weather forecast model, by employing a Bayesian framework. The goal of the study is to evaluate the capability of the proposed technique to improve track prediction of tropical cyclones that originate in the North Indian Ocean.

Advanced Weather Research and Forecast (ARW)

The model domain is shown in Figure 1. It has one coarse domain consists of 291 x 291 grids points with 6 km resolution and covers 3 to 25 N and 77 to 93 E

Cumulus parameterization	Grell-Devenyi ensemble scheme (GD)
PBL	Mellor-Yamada-janjic(Eta) TKE
Micro physics	WRF Single Moment 3-class simple ice
urface layer physics	Monin-Obukhov (janjic Eta) scheme (JAN)
Land Surface model	Pleim-Xu scheme (PLEIM)
Long wave Radiation Physics	Rapid Radiative Transfer Model (RRTM
Shortwave Radiation Physics	Rapid Radiative Transfer Model for Global (RRTMG)

Physics parameterizations schemes used in this study

Observation operator

 $\mathsf{P}_{\mathsf{sat}} = 61.078 \left(\frac{7.5\mathsf{T} - 2048.625}{\mathsf{T} - 25.85} \right)$ $P_{v} = RH \times \frac{P_{sat}}{100}$ $P_{air} = P - P_{v}$ $\rho = 100 \left(\frac{P_{d}}{R_{d} \times T} + \frac{P_{v}}{R_{v} \times T} \right)$

> If height \leq 5km If height \geq 5km If height < 5km

where **P**_{sat} is saturation pressure, $\mathbf{P}_{\mathbf{v}}$ is vapor pressure, **P**_d is dry air pressure R_v is gas constant of vapor(461.495) (R_d)is gas constant of dry air(287.058).

$CLW = 1000 \times Q_{c} \times \rho$	CI = 0
$CI = 1000 imes Q_c imes ho$	CLW = 0
$PW = 1000 imes Q_{r} imes ho$	PI = 0

Model Domain

Data used for assimilation

The TRMM Microwave Image(TMI) 1B11(10.65, 19.35, 21, 37, and 85.5 GHz) brightness temperature (BT) data are used to retrieve hydrometeors profiles that are assimilated simultaneously.

Retrieval algorithm

If height \geq 5km

 $PI = 1000 \times Q_r \times \rho$ PW = 0

Data Assimilation Methodology

Bayesian likelihood $L_{(ensemble)} = exp \left[-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{14} \sum_{k=1}^{4} \left(\frac{HM(k)_{ret:i,j} - HM(k)_{ens:i,j}}{HM(k)_{ret:i,j} - HM(k)_{ctr:i,j}} \right)^{2} \right]$

posterior probability density function(PPDF)

Empirical Orthogonal Functions (EOF)

- Extracting shape information from a database (from the NCEP GFS data 2010) Nov 06 00 UTC, i/c for control run) through the covariance matrix.
- Calculating principal components of this covariance matrix by performing an eigenvalue analysis.
- Generating synthetic profile by using random number vectors and eigenvectors and eigenvalues of principal components.

$$\mathbf{X}_{\text{perturbed}} = \mathbf{X}_{\text{unperturbed}} + \sum_{\mathbf{v}=1}^{\mathsf{N}} \zeta_{\mathbf{v}} \sqrt{\lambda_{\mathbf{v}}} \phi_{\mathbf{v}}$$

 ζ_v is a normal random number and $X_{unpertubed}$ is the vector of initial conditions obtained from NCEP. The details of generating synthetic profiles avilable in Tatarskaia et al.[1].

Variables perturbed

Perturbation geopotential $(\phi, \mathbf{m}^2/\mathbf{s}^2)$, Perturbation potential temperature (θ, \mathbf{k}) , X-wind(U, m/s) and Y-wind velocity(V, m/s), Water Vapor mixing

Flow chart of the new ensemble based assimilation algorithm developed in this study

Results

Time	Forecast	ctrl	En25	En50	En75	En100
UTC	hour					
600	0	20.5	26.4	26.4	26.4	26.4
606	6	29.5	24.4	29.5	37.9	46.4
612	12	33.8	47.3	25.9	33.8	37.6
618	18	68.6	44.0	58.6	54.0	63.5
700	24	70.8	40.6	53.7	49.8	45.0
706	30	99.9	102.8	89.2	86.3	99.9
712	36	161.2	146.8	139.5	147.8	152.9
718	42	171.8	156.3	151.0	186.3	169.7
806	54	228.4	190.8	183.2	193.6	194.4
	24hr Avg	44.6	36.5	38.8	40.4	43.8
	54hr Avg	98.3	86.6	84.1	90.6	92.9
	_			_		

Error in track (km) in the ensemble sensitivity study

Track propagation in the Ensemble sensitivity study

Conclusions

From the ensemble sensitivity study, it was seen that the assimilation can reduce track errors up to 12% in a 54 hr forecast and up to 18.16% in a 24hr forecast with an ensemble family size of 25.

ratio $(q_v, kg/kg)$ Vertical structure of perturbation potential temperature

Unperturbed GFS random sample 1 random sample3 random sample 2 First level water vapor mixing ratio

This study mainly demonstrated the efficacy Monte Carlo ensemble based Bayesian assimilation algorithm for track reduction with a NWP model. Further studies are required to accurately assess the real impact of this assimilation algorithm in cyclone predictions that can be applied in a variety of situations.

References

[1].M.S. Tatarskaia, R.J. Lataitis, B.B. Stankov, and V.V. Tatarskii. "A numerical method for synthesizing atmospheric temperature and humidity profiles", Journal of Applied Meteorology, 37(7):718-729, 1998.

Acknowledgements

NCAR for providing WRF model, NCEP for providing GFS data, NASA and JAXA for providing TRMM data products.