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Why Calibrate Ensemble Predictions ?

I Ensemble forecasts: a mean to assess the uncertainty in
meteorological forecasts

å Unfortunately uncertainty underestimated by current ensemble
prediction systems (EPS)

å Unfortunately ensemble often provided at unsuitable spatial/temporal
scales (e.g. for hydrological predictions)

å Statistical post-processing required to obtain reliable ensemble
forecasts at appropriate scales

Verification Scores

Continuous Ranked Probability Score

I Comparison of cumulative
distribution functions from
ensemble forecasts F, with
observation y through the
Heaviside function

I Negatively oriented (smaller is
better)

I See details in Hersbach (2000)

CRPS{F , y} =

∫ ∞
−∞
{F (u)− H(u − y)}2 du

Reliability

I Statistical consistency between a priori predicted probabilities and a
posteriori observed frequencies of the occurrence

I Reliability measured by the Reliability Component of the CRPS
decomposition (Hersbach, 2000)

Observation and Forecast Datasets

Canadian Daily Climate Data

I Temperature observation from meteorological station in Jean Lesage
Intl. Airport (YQB) in Quebec City over the period 1978-2007

I Temperature observed at 00Z

I http://www.climat.meteo.gc.ca

North American Ensemble Forecasting System

I 21 members from the Global
Ensemble Prediction System
of CMC based on the Global
Environmental Multiscale
(GEM) model

I 21 members from the
ensemble configuration of the
Global Forecast System (GFS)
of NCEP

I Forecasts provided on a
1-degree grid

I Runs 00Z, lead times +24h to
+384h by 24h

I from April 2008 to March
2009

observations vs ensemble forecast (Quebec City)

Verification of raw ensemble forecasts

I GFS: lowest skill for all lead times

I GEM+GFS: skill closed to GEM

å No additional benefit in forecasting by using 42 members

I Ensemble predictions less skillful than climatology

I Ensemble predictions are not reliable

å Calibration of ensemble predictions from GEM

Skill (CRPS)

Reliability (CRPS Rel)

+ (y) log scale

Notations and Hypotheses

Notations

t valid date yt predictand (quantity to predict)

S ensemble size X
(h)
t ensemble forecasts

h forecast’s lead time X
(h)
t = {X (h)

t,s , s = 1, 2, ..., S}
temporal independance: h is omitted

Assumptions

I Ensemble members generated in the same way

å exchangeability

I Numerical model well suited for predicting an unobserved (latent)
variable ξt (e.g. gridded temperature)

I Latent variable ξt exchangeable with all ensemble members Xt,s
I ξt contains all the information required to predict yt

å Xt and yt are conditionally independant

BMA Component (Raftery et al., 2005)

I Law of total probability

p(yt|Xt) =

∫
p(yt|ξt,Xt)p(ξt|Xt)dξt

I As Xt and yt are conditionally independant

p(yt|Xt) =

∫
p(yt|ξt)p(ξt|Xt)dξt

I Since the latent variable is exchangeable with ensemble members

p(ξt|Xt) ≈
1

S

S∑
s=1

δ(ξt − Xt,s)

å BMA framework: Non-parametric approximation of the predictive
distribution

p(yt|Xt) ≈
1

S

S∑
s=1

p(yt|Xt,s)

BPO Component (Krzysztofowicz, 2004)

I Bayes’ rule
p(yt|ξt)︸ ︷︷ ︸
posterior

∝ p(ξt|yt)︸ ︷︷ ︸
likelihood

p(yt)︸︷︷︸
prior

I Prior distribution of the predictand = climatology
. Temperature: Gaussian distribution
. Estimated from the past 30 years (1978–2007) with a moving

window of 5 days around the valid date

p(yt) = N
(
yt ;µ, σ

2
)

I Likelihood function
. Assuming linear model with Gaussian residuals between the

predictand and the latent variable

ξt = α + βyt + εt εt ∼ N (0, σ2
ε|y l1)

. But ξt not observable

X̄t = α + βyt + ηt ηt ∼ N (0, σ2
X̄ |y l1)

. Bayesian specification of the linear regression with informative
conjugate priors defining 4 hyperparameters

. Bayesian point estimators α, β and σ2
X̄ |y : a compromise between a

priori and least squares estimates
. Less information in X̄t than in ξt : σ

2
X̄ |y is an upper bound of σ2

ε|y
å Optimal variance σ2

ε|y estimated by minimizing the CRPS

å BPO framework:
p(yt|ξt) = N (yt ;µy |ξ, σ

2
y |ξ)

µy |ξ =
σ2β2(ξt−αβ ) + σ2

ε|yµ

σ2β2 + σ2
ε|y

σ2
y |ξ =

σ2σ2
ε|y

σ2β2 + σ2
ε|y

Bayesian Processor of Ensemble Members

Combining the BMA and BPO frameworks

p(yt|Xt) ≈
1

S

S∑
s=1

N (yt ;µy |Xt,s , σ
2
y |Xt,s)

µy |Xt,s =
σ2β2(

Xt,s−α
β ) + σ2

ε|yµ

σ2β2 + σ2
ε|y

σ2
y |Xt,s =

σ2σ2
ε|y

σ2β2 + σ2
ε|y

I µy |Xt,s : weighted average of bias-corrected member
Xt,s−α
β and of

the prior mean from climatology µ

I σ2
y |Xt,s : weighted mixture of residuals variance of the linear model

σ2
ε|y and of the climatological variance σ2

I The predictive distributions’s shape depends on the empirical
distribution of the ensemble members

å the predictive distribution is not necessary Gaussian

◦ • GEM / calibrated members Predictive distribution

Observation Constituent distribution

Identification of the Optimum Training Length

I training period: 10-days
to 50-days joint samples

I No significant gain in
forecasts’s skill beyond 15
days

I Calibrated forecasts less
skillful than
climatology-based
forecasts for longer-range
lead times

I Optimal training length:
15 days

I Short training length: limit effects of seasonality and frequent
changes to operational forecasting systems

Illustration of the BPEM Method

24-hour ahead forecast valid the 10th of July 2008

Ê Prior distribution

I Climatology: observations
from the past 30 years
(1978–2007) inside a moving
window of 5 days around the
valid date

I No seasonality effect nor
climatological trend

I Estimated parameters:
µ̃ = 20.64 and σ̃ = 3.51

Ë Likelihood function

I Bayesian Linear Regression
estimated from the joint
sample (ensemble means and
observations) over the
training window

I Hyperparameters estimated
from least squares linear
regressions, in the same
season, using joint samples of
closed lead time with the
same training length

I Estimated parameters:
α̃ = 10.17, β̃ = 0.40 and
σ̃2
X |y = 2.22

Ì Optimal error variance of the
latent variable

I Standard error of the latent
variable determined by grid
search

I Minimisation of CRPS within
the interval [0.0, 2.22]

I Optimal error variance:
σ̃2
ε|y = 1.20

◦ • GEM and calibrated ensemble members

Empirical distribution of GEM members

Predictive distribution

Climatological distribution

Observation

Verification of Calibrated Ensemble Forecasts

I Verification performed on the summer season (July and August 2008)

I Optimal training length for each calibration method

I Forecasts’ skill improved by calibration (up to +192h) with similar
pattern for each calibration method

I Significant improvment of forecasts’ reliability

Conclusions on BPEM

... a new approach to calibrated ensemble forecasts

I Based on BMA and BPO frameworks

I Capable to generate reliable forecasts

I Outperforms slightly both the BMA and BPO approaches as well as
a climatology

I Short optimal training length: avoid negative impacts of seasonality
and of frequent changes to operational forecasting systems

I Successfully applied to 7 other stations accross the Quebec
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