

Canada

Bayesian Processor of Ensemble Members: combining the Bayesian Processor of Output with Bayesian Model Averaging for reliable ensemble forecasting R. Marty^{1,2} V. Fortin² H. Kuswanto³ A.-C. Favre⁴ E. Parent⁵

¹Université Laval, Québec, Canada²Environnement Canada, Dorval, Canada³Institute Technology of Sepuluh Nopember, Indonesia ⁴Grenoble INP/LTHE, Grenoble, France ⁵AgroParisTech/INRA, Paris, France

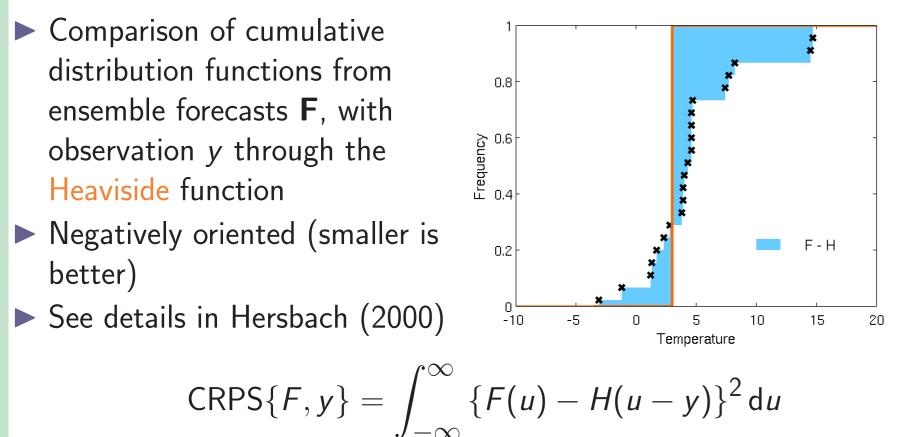
Why Calibrate Ensemble Predictions ?

- Ensemble forecasts: a mean to assess the uncertainty in meteorological forecasts
- → Unfortunately uncertainty underestimated by current ensemble prediction systems (EPS)
- Unfortunately ensemble often provided at unsuitable spatial/temporal scales (e.g. for hydrological predictions)
- Statistical post-processing required to obtain reliable ensemble forecasts at appropriate scales

Verification Scores

Continuous Ranked Probability Score

ensemble forecasts **F**, with observation y through the



BMA Component (Raftery et al., 2005)

Law of total probability

$$p(y_t|\mathbf{X}_t) = \int p(y_t|\xi_t, \mathbf{X}_t) p(\xi_t|\mathbf{X}_t) d\xi$$

 \blacktriangleright As X_t and y_t are conditionally independent

$$p(y_t|\mathbf{X}_t) = \int p(y_t|\xi_t)p(\xi_t|\mathbf{X}_t)d\xi_t$$

Since the latent variable is exchangeable with ensemble members

$$p(\xi_t | \mathbf{X}_t) \approx \frac{1}{S} \sum_{s=1}^{S} \delta(\xi_t - X_{t,s})$$

BMA framework: Non-parametric approximation of the predictive distribution

$$p(y_t|\mathbf{X}_t) \approx rac{1}{S} \sum_{s=1}^{S} p(y_t|X_{t,s})$$

Illustration of the BPEM Method

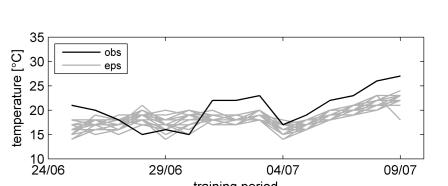
24-hour ahead forecast valid the 10th of July 2008

1 Prior distribution

- Climatology: observations from the past 30 years (1978–2007) inside a moving window of 5 days around the valid date
- No seasonality effect nor climatological trend
- **Estimated parameters**: $\tilde{\mu} = 20.64$ and $\tilde{\sigma} = 3.51$

2 Likelihood function

Bayesian Linear Regression estimated from the joint sample (ensemble means and



250

ĭn n1 n2

climatology obs

Reliability

- Statistical consistency between a priori predicted probabilities and a posteriori observed frequencies of the occurrence
- Reliability measured by the Reliability Component of the CRPS decomposition (Hersbach, 2000)

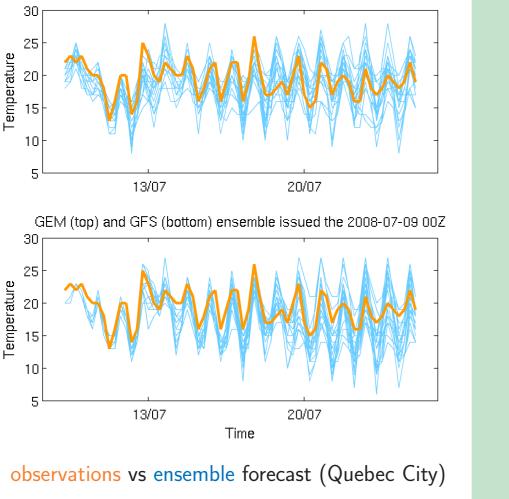
Observation and Forecast Datasets

Canadian Daily Climate Data

- Temperature observation from meteorological station in Jean Lesage Intl. Airport (YQB) in Quebec City over the period 1978-2007
- Temperature observed at 00Z
- http://www.climat.meteo.gc.ca

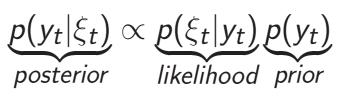
North American Ensemble Forecasting System

► 21 members from the Global Ensemble Prediction System of CMC based on the Global Environmental Multiscale



BPO Component (Krzysztofowicz, 2004)

► Bayes' rule



- Prior distribution of the predictand = climatology
 - Description Temperature: Gaussian distribution
 - Estimated from the past 30 years (1978–2007) with a moving window of 5 days around the valid date

$$p(y_t) = \mathcal{N}\left(y_t; \mu, \sigma^2\right)$$

- Likelihood function
 - > Assuming linear model with Gaussian residuals between the predictand and the latent variable

$$\xi_t = \alpha + \beta \mathbf{y}_t + \epsilon_t$$

$$\epsilon_t \sim \mathcal{N}(\mathbf{0}, \sigma^2_{\epsilon|\mathbf{y}} \mathbf{1})$$

 $\sigma^2 \sigma_{\epsilon|y}^2$

 \triangleright But ξ_t not observable

$$f_t = \alpha + \beta y_t + \eta_t$$
 $\eta_t \sim \mathcal{N}(0, \sigma_{\bar{X}|y}^2)$

▷ Bayesian specification of the linear regression with informative conjugate priors defining 4 hyperparameters \triangleright Bayesian point estimators α , β and $\sigma_{\bar{X}|v}^2$: a compromise between a priori and least squares estimates ▷ Less information in \bar{X}_t than in ξ_t : $\sigma_{\bar{X}|y}^2$ is an upper bound of $\sigma_{\epsilon|y}^2$ rightarrow Optimal variance $\sigma_{\epsilon|v}^2$ estimated by minimizing the CRPS

➡ BPO framework: $p(y_t|\xi_t) = \mathcal{N}(y_t; \mu_{v|\xi}, \sigma_{v|\xi}^2)$

$$-\frac{\sigma^2\beta^2(\frac{\xi_t-\alpha}{\beta})+\sigma}{2}$$

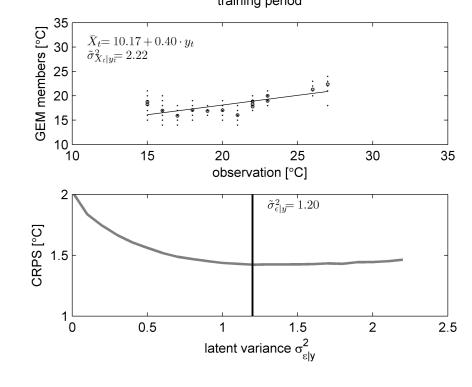
$$-\frac{\sigma_{\epsilon|y}^2\mu}{\sigma_{\epsilon|y}^2}$$
 $\sigma_{\epsilon|z}^2$

observations) over the training window

- Hyperparameters estimated from least squares linear regressions, in the same season, using joint samples of
- closed lead time with the same training length
- Estimated parameters: $ilde{lpha}=$ 10.17, $ilde{eta}=$ 0.40 and $\tilde{\sigma}_{X|y}^2 = 2.22$

3 Optimal error variance of the latent variable

- Standard error of the latent variable determined by grid search
- Minimisation of CRPS within the interval [0.0, 2.22]
- Optimal error variance: $\tilde{\sigma}_{\epsilon|y}^2 = 1.20$



Validation Date : 2008-07-10 Lead time : +24 / TrnLen :15 10 15 25 30 20 Temperature

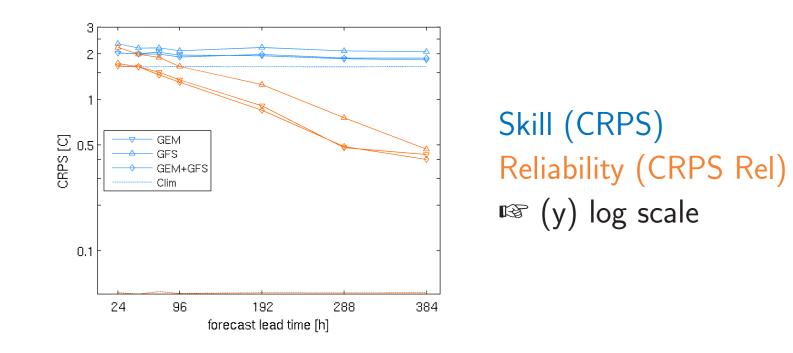
- GEM and calibrated ensemble members
- Empirical distribution of GEM members
- Predictive distribution
- Climatological distribution
- Observation

Verification of Calibrated Ensemble Forecasts

- (GEM) model
- ▶ 21 members from the ensemble configuration of the Global Forecast System (GFS) of NCEP
- Forecasts provided on a 1-degree grid
- \blacktriangleright Runs 00Z, lead times +24h to +384h by 24h
- ► from April 2008 to March 2009

Verification of raw ensemble forecasts

- ► GFS: lowest skill for all lead times
- ► GEM+GFS: skill closed to GEM
- ► No additional benefit in forecasting by using 42 members
- Ensemble predictions less skillful than climatology
- Ensemble predictions are not reliable
- ► Calibration of ensemble predictions from GEM



Bayesian Processor of Ensemble Members

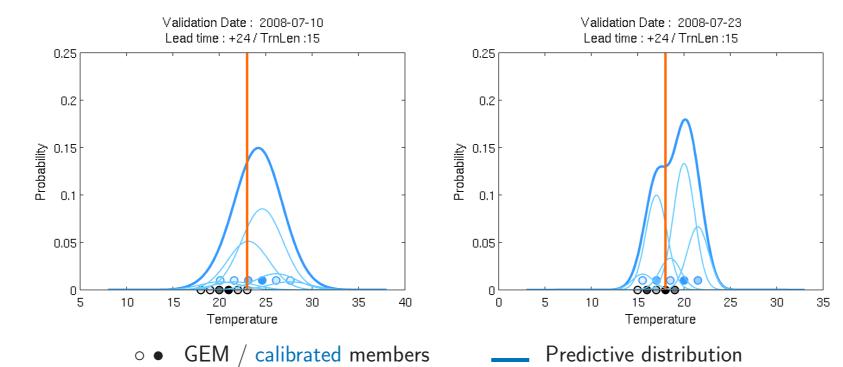
Combining the BMA and BPO frameworks

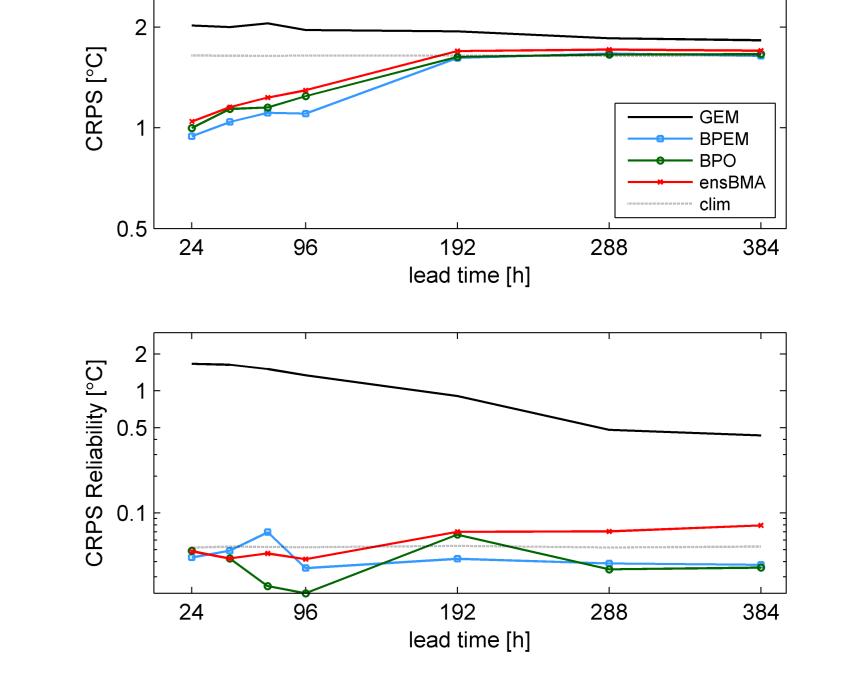
$$p(y_t | \mathbf{X}_t) \approx \frac{1}{S} \sum_{s=1}^{S} \mathcal{N}(y_t; \mu_{y | X_{t,s}}, \sigma_{y | X_{t,s}}^2)$$

$$u_{y|X_{t,s}} = \frac{\sigma^2 \beta^2 (\frac{X_{t,s} - \alpha}{\beta}) + \sigma_{\epsilon|y}^2 \mu}{\sigma^2 \beta^2 + \sigma_{\epsilon|y}^2} \qquad \sigma_{y|X_{t,s}}^2 = \frac{\sigma^2 \sigma_{\epsilon|y}^2}{\sigma^2 \beta^2 + \sigma_{\epsilon|y}^2}$$

- ► $\mu_{y|X_{t,s}}$: weighted average of bias-corrected member $\frac{X_{t,s}-\alpha}{\beta}$ and of the prior mean from climatology μ
- $\triangleright \sigma_{y|X_{t,s}}^2$: weighted mixture of residuals variance of the linear model $\sigma_{\epsilon|v}^2$ and of the climatological variance σ^2
- The predictive distributions's shape depends on the empirical distribution of the ensemble members

the predictive distribution is not necessary Gaussian





- Verification performed on the summer season (July and August 2008)
- Optimal training length for each calibration method
- ► Forecasts' skill improved by calibration (up to +192h) with similar pattern for each calibration method
- Significant improvment of forecasts' reliability

Conclusions on BPEM

- ... a new approach to calibrated ensemble forecasts
- Based on BMA and BPO frameworks
- Capable to generate reliable forecasts
- Outperforms slightly both the BMA and BPO approaches as well as

Notations and Hypotheses

Notations

valid date *S* ensemble size *h* forecast's lead time

predictand (quantity to predict) $X_{t}^{(h)}$ ensemble forecasts $\mathbf{X}_{t}^{(h)} = \{X_{ts}^{(h)}, s = 1, 2, ..., S\}$ temporal independance: *h* is omitted

Assumptions

- Ensemble members generated in the same way \blacktriangleright exchangeability
- Numerical model well suited for predicting an unobserved (latent) variable ξ_t (e.g. gridded temperature)
- Latent variable ξ_t exchangeable with all ensemble members $X_{t,s}$
- \triangleright ξ_t contains all the information required to predict y_t
- \rightarrow X_t and y_t are conditionally independent

Observation

days

15 days

Constituent distribution

← + 48h

50

Identification of the Optimum Training Length

- ► training period: 10-days to 50-days joint samples ► No significant gain in _____+ 24h forecasts's skill beyond 15 2.5 CRPS [°C] Calibrated forecasts less skillful than climatology-based forecasts for longer-range lead times 0.75 Optimal training length: training window [day]
- Short training length: limit effects of seasonality and frequent changes to operational forecasting systems

- a climatology
- Short optimal training length: avoid negative impacts of seasonality and of frequent changes to operational forecasting systems
- Successfully applied to 7 other stations accross the Quebec

Some References

Hersbach, H. (2000). Decomposition of the Continuous Ranked Probability Score for ensemble prediction systems. Weather and Forecasting 15(5), 559–570.

Krzysztofowicz, R. (2004). Bayesian Processor of Output: a new technique for probabilistic weather forecasting. In 17th Conference on Probability and Statistics in the Atmospheric Sciences, Volume 4.2, Seattle, Washington, USA. American Meteorological Society.

Raftery, A. E., T. Gneiting, F. Balabdaoui, and

M. Polakowski (2005). Using Bayesian Model Averaging to calibrate forecast ensembles. Monthly Weather Review 133(5), 1155–1174.

12-16 November 2012, Toulouse, France

International Conference on Ensemble Methods in Geophysical Sciences

renaud.marty@ec.gc.ca