
 

 

 

 

 

 

 

 

 

 
 

2. Issues with Skewness 

Hodyss (2011) showed that whenever the posterior is skewed the 
posterior mean is a nonlinear (curved) function of the innovation. 
Hodyss (2011) showed that the posterior mean, �̅�, is related to 
posterior third moment through: 

      

  

where T is the posterior third moment, R is the observation error 
variance, and v is the innovation.  Because the EnKF estimate of the 
posterior mean is a linear function of the innovation this leads to 
significant errors in its estimate of the posterior mean.   

Hodyss (2011) also showed that ensemble generation is also 
difficult when there exists a posterior third moment because  

 
 

which implies that the analysis error variance is a function of the 
most recent innovation.  However, the EnKF algorithm assumes the 
analysis error variance is independent of innovation. 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 
 

 

Abstract   
 

 A new framework is presented for understanding how a non-normal probability density function (pdf) may affect a state estimate and how 
one might usefully exploit the non-normal properties of the pdf when constructing a state estimate.  A Bayesian framework is constructed that leads 
naturally to an expansion of the expected forecast error in a polynomial series consisting of powers of the innovation vector.  This polynomial 
expansion in the innovation reveals a new view of the geometric nature of the state estimation problem.  It is shown that this expansion in powers 
of the innovation provides a direct relationship between a non-normal pdf describing the likely distribution of states and a normal pdf determined 
by powers of the forecast error. A practical data assimilation algorithm is presented that explicitly accounts for skewness in the prior distribution.  
The algorithm operates as a global-solve (all observations are considered at once) using a minimization-based approach and Schur/Hadamard 
(element-wise) localization.  The central feature of this technique is the squaring of the innovation and the ensemble perturbations so as to create an 
extended state-space that accounts for the second, third and fourth moments of the prior distribution. 
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1. Introduction 
 

 Ensemble-based data assimilation (DA) is rapidly becoming the technique of choice for the 
estimation of the state of a geophysical system.  This popularity is largely due to the 
significant ease of implementation afforded by the use of an Ensemble-based Kalman Filter 
(EnKF) DA system.  The EnKF is a Monte-Carlo state-estimation technique for estimating 
the posterior mean and for generating random draws from the posterior distribution.  The 
application of this technique in the meteorological community has been met with 
considerable success in a wide-range of applications (e.g., Houtekamer et al. 2005, 
Whitaker et al. 2008, Anderson et al. 2009).  There are, however, unresolved issues with the 
application of the EnKF to the highly nonlinear dynamics inherent to meteorological flows 
at high resolution.  Situations in which the EnKF is known to have some difficulty, and 
where nonlinearity may be the culprit, include: the assimilation of vortex position (Lawson 
and Hansen 2005, Chen and Snyder 2007), radar observations (Dowell et al. 2011), 
parameter estimation (Hacker et al. 2011), and observations over a long assimilation 
window (Khare et al. 2008).  We speculate that one reason state and parameter estimation 
in these situations is sometimes difficult is the fact that the relationship between the prior 
estimates of the observed variables and the state-vector may be nonlinear.  This 
nonlinearity may come about from the nonlinearity in the model operator (i.e. model 
dynamics) or from the nonlinearity in the observation operator used to observe the system.  
In either case, this nonlinear relationship will generally lead to skewed (non-zero third 
moment) posterior distributions that result in suboptimal behavior from the EnKF.        

 

3. Data Assimilation through Bayes’ Rule 

We imagine the true state, x, to be drawn from a distribution        that we will refer 
to as the prior. At the present time we have available an observation y drawn from 
a distribution we refer to as the observation likelihood such that we may use 
Bayes’ rule to obtain a density that describes the combined knowledge of the 
distribution of possible true states: 

 

A standard estimation technique for the true state given the posterior density is to 
find its mean, i.e. 

 

 

Because the observation and the innovation are linearly related we may equally 
well condition on the innovation 

 

 

This equation shows that the correction to the prior mean should be the expected 
forecast error given todays innovation.  Because the posterior may be a nonlinear 
function of the innovation a DA system that aims to deliver the posterior mean 
must also be a nonlinear function of the innovation.  One way to accomplish this 
task is through nonlinear regression.  We may expand the integral above into a 
Taylor-series to perform nonlinear polynomial regression: 
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4. A Global-Solve Algorithm 
 
Define an extended innovation vector as  
 
 
 
where  
 
Similarly, the observation operator is extended 
 
 
 
 
We define an extended covariance matrix as 
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The extended observation error covariance matrix is 
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With these definitions we may perform nonlinear quadratic regression  
using  the following formula   
 
 
 
The most difficult part of the calculation is the matrix inversion in the  
calculation of the weights.  The most efficient way to do this in a 
global-solve (all observations assimilated at once) is through a minimization  
approach.   
 
 
Step 1.  Solve                                    for u.  We may write a better conditioned  
version as 
 
 
Typically, one would solve this equation using a technique like conjugate gradient.   
 
 
Step 2.  Solve for the weights of the prior through     
 
 
Step 3.  Solve for the mean update through  
 
 
Note: The difference between this algorithm and a traditional global-solve method,  
such as Buehner (2005), is simply the extension of the length of the state-vectors  
to include the quadratic perturbations.  Therefore, this method does not require a  
new system to be developed from scratch.  Rather, this algorithm can be seen as  
a modification to the system the user presently has constructed. 
 

5. Application 
 
Here we apply the algorithm to the left to a 2-d shear layer 
simulation using the nonlinear Boussinesq equations.  Localization  
is applied consistent with Bishop  et al. (2011). The state vector is 
of length 8448 elements.  This system is of high enough dimension 
that both localization and prior inflation were required to prevent 
filter divergence at the ensemble sizes considered here.  Both 
localization and prior inflation are tuned separately for both the 
EnKF as well as the quadratic ensemble filter.  Ensemble generation 
was performed with the method referred to as perturbed 
observations.  Three different cycling intervals of 200, 300, and 400 
model time steps are tested.  Observations of zonal wind and 
temperature at 10 equally spaced vertical soundings with 32 
observations in each vertical sounding are taken.  We cycle for 320 
cycles, throw away the first 20, and calculate statistics on the 
remaining 300 cycles. 
 
In figure 2 we see the RMS analysis error for the different 
experiments as function of ensemble size.  In all experiments the 
quadratic ensemble filter outperforms the traditional EnKF for all 
cycling intervals and ensemble sizes shown.  Tests with a cycling 
interval of 100 model time steps showed no improvement over the 
EnKF and tests with an ensemble size of 32 showed degradation.  
Hence, we conclude that given a sufficient ensemble size and a 
sufficiently long cycling interval (longer cycling intervals have 
stronger non-Gaussian distributions) then the quadratic ensemble 
filter is superior to a state-of-the-art EnKF. 
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