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Introduction & Goals 
  This study demonstrates the utility of assimilating lightning data from the  
    GLM instrument onboard the future GOES-R for severe weather    
    applications 
  Proxy lightning DA into a NWP model with a hybrid variational-ensemble  
     DA system is investigated  
  Case Study: April 28-29, 2011 tornado outbreak – Southeastern, United  
     States (Tuscaloosa, Alabama) 
  The goal is to correct the intensity and location of severe thunderstorms  
    during the analysis and short-time (6-hr) forecast steps 

DA & Model System Set-up 

Observation Operator Correction 

R  E  S  U  L  T  S 

  WRF-NMM, resolution --- 27 and 9km 

  The Maximum Likelihood Ensemble Filter (MLEF) is used as a hybrid   
     variational-ensemble DA system 

  32-ensembles at 6-hr assimilation interval 

  Lightning data from the World Wide Lightning Location Network (WWLLN) --  10km  
     location accuracy 

  Control variables: T, Q, U, V, PD, PINT, CWM 

   2 experiments with lightning data assimilation (LIGHT) and without data assimilation  
     (NODA) 

Evaluating the potential impact of lightning data assimilation  
utilizing hybrid variational-ensemble methods	  

Lightning Observation Operator  
   Starts by calculating 
maximum vertical velocity 
(wmax) from WRF-NMM 

  An empirical relationship 
between lightning flash rate 
and vertical velocity is used 

   Flow diagram of the 
MLEF DA system and Obs. 
Opt. shown in Figure 1 Figure 1. Flow chart of the MLEF DA system and  

lightning observation operator  

Summary & Future Work 
  The assimilation of lightning data adds new information to the system 
  Lightning DA impacts winds, advection and absolute vorticity 
  Time-dependent forecast error covariance (Pf) follows the observations  
    throughout the assimilation period 
  Will include operational observations to constrain the fit in the        
  analysis and to test combined GLM and ABI observations from the future              
  GOES-R  
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Rodgers Information Content of Observations 

Statistics 

Synoptic Representation 

   Assume a multiplicative correction 
to the lightning observation operator                   
                  where           is the 
unknown multiplication parameter  

 The cost function will have an 
adjustable parameter           : 

 Where RL = obs. error covariance, α0 
= guess value, W = guess uncertainty 
matrix 
   Search for the optimal parameter 
αopt > 0 that minimizes the cost 
function  

Figure 2. PDF Innovations – histograms, before and 
after correction. Before correction (left), the 
innovation vector was skewed and positively biased. 
After correction (right) it was  normalized.  

€ 

w =
1
g
∂Φ
∂t

+ν⋅ ∇σΦ+σ
• ∂Φ
∂σ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

  With a typical guess value of α0= 1, the 
solution becomes (1), where Nobs = # of 
observations, diag(RL)=r0 and diag(W)=w0 
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Figure 3. (a) Background winds at 850mb, (b) wind difference [A-B] and (c) absolute vorticity 
difference [A-B]  (LIGHT) 

  The following contour plots, correspond to the LIGHT experiment 
at April, 28 0000UTC, the touch-down time of the Tuscaloosa, 
Alabama tornado 

  The region of strongest winds (Fig. 3a) coincides with the area 
where the lightning observations are located (Fig. 7b) (ellipses) 

 By assimilating lightning, the analysis increased making advection 
and absolute vorticity at 850mb go up (Figure 3b,c) 

 The wind difference, suggests that stronger vorticity is being 
advected into the region of high CAPE gradient (dry-line) (Figure 4) 

  CAPE at  forecast, exists in the place of observed strong CAPE 
gradient (Figure 4) 

   RMS errors are calculated from a super-obed 
domain containing all the lightning observations at 
10km resolution 

  From Figure 5a,b, LIGHT achieves a better fit in 
the assimilation, only partially kept in the forecast 

  Improving dynamical balances could positively 
impact forecast RMS errors 

Figure 4. (a) background and (b) observed CAPE (LIGHT experiment) 

Figure 5. Analysis (a) and (b) observed CAPE (light experiment) 

Figure 6. Rodgers information content during cycles 3, 5 and 7 

Figure 7. Lightning observations during assimilation cycles 3, 5 and 7 

   Use information theory (e.g. entropy) as an objective, pdf-based 
quantification of information (Rodgers 2000; Zupanski et al. 2007): 
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H X{ } = − p(x)log(p(x))dx∫
Entropy	   Change	  of	  entropy	  due	  to	  observa4ons	  

!H = H X{ }"H X |Y{ } !H = ds = trace I "PaPf
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Ensemble:	  In	  realisHc	  ensemble	  methods	  ds	  can	  be	  computed	  exactly	  in	  ensemble	  subspace	  	  
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ΔH	  assumes	  a	  Gaussian	  PDF	  

   Time-dependent covariance Pf shows direct relationship to obs. 
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