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Introduction & Goals

DA & Model System Set-up

This study demonstrates the utility of assimilating lightning data from the
GLM instrument onboard the future GOES-R for severe weather
applications

Proxy lightning DA into a NWP model with a hybrid variational-ensemble
DA system is investigated

Case Study: April 28-29, 2011 tornado outbreak — Southeastern, United
States (Tuscaloosa, Alabama)

The goal is to correct the intensity and location of severe thunderstorms
during the analysis and short-time (6-hr) forecast steps

WRF-NMM, resolution --- 27 and 9km

The Maximum Likelihood Ensemble Filter (MLEF) is used as a hybrid
variational-ensemble DA system

32-ensembles at 6-hr assimilation interval

Lightning data from the World Wide Lightning Location Network (WWLLN) -- 10km
location accuracy

Control variables: T, Q, U, V, PD, PINT, CWM

2 experiments with lightning data assimilation (LIGHT) and without data assimilation
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Lightning Observation Operator

Observation Operator Correction

Starts by calculating

maximum vertical velocity
(W,,ax) from WRF-NMM

Ughtning Observation Operator

w=l(@+v-VfD+c}@)
g\ o e do

An empirical relationship
between lightning flash rate
and vertical velocity is used
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f=caywp,

c=5€, a,,= correction ——
parm., f=4.5 .
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Flow diagram of the
MLEF DA system and Obs.

Opt. shown in Figure 1 Figure 1. Flow chart of the MLEF DA system and

lightning observation operator

Assume a multiplicative correction
to the lightning observation operator
= h(x) =oh(x),  where [ QL is the
unknown multiplication parameter

DF Innovations — Histograms

e The cost function will have an
s adjustable parameter l@>0

\ - (@) = Hog(@) ~10g(ct) ' W log(e) ~log(ct !

( “ g +%[10g(y) ~log(ah(x)]" R}'[log(y) ~log(ah(x))]
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AN S =/ \ Where R, = obs. error covariance, o,
) Lty = guess value, W = guess uncertainty
Figure 2. PDF Innovations — histograms, before and matrix .
after correction. Before correction (left), the Search for the optimal parameter
innovation vector was skewed and positively biased. P
After correction (right) it was normalized. Qe > 0 that minimizes the cost
function N P
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With a typical guess value of a,= 1, the o | N & ),
. @) |%op =CXP =
solution becomes (1), where N, = # of 140
observations, diag(R,)=r, and diag(W)=w, Wo

RESULTS
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Synoptic Representation

The following contour plots, correspond to the LIGHT experiment
at April, 28 0000UTC, the touch-down time of the Tuscaloosa,

(o) Oveorved GAPE Whg)

lRodgers Information Content of Observations

Use information theory (e.g. entropy) as an objective, pdf-based
quantification of information (Rodgers 2000; Zupanski et al. 2007):

Alabama tornado Entropy Change of entropy due to observations AH assumes a Gaussian PDr
H{X} = - [ p(x)log(p(x))dx AH=H{X}-H{XIY} AH =d, :/‘(lt’t’[l*fi,ii']
The region of strongest winds (Fig. 3a) coincides with the area el sl enerblemeshos 6 can e v P
where the lightning observations are located (Fig. 7b) (ellipses) P=pP(1ez'Z) BT Z=RUHPS Z7Z-UNT TR
ram Valld: 2011-04-27_12:00:00 VARG 2010428 004000 Valig: 2011-04-26_12:00.00
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By assimilating lightning, the analysis increased making advection Figure 4. (a) background and (b) observed CAPE (LIGHT experiment) .
and absolute vorticity at 850mb go up (Figure 3b,c) ! | q ’
The wind difference, suggests that stronger vorticity is being RMS errors are calculated from a super-obed ? I N I
advected into the region of high CAPE gradient (dry-line) (Figure 4) | domain containing all the lightning observations at L I | ]
10km resolution | N
CAPE at forecast, exists in the place of observed strong CAPE e

gradient (Figure 4) From Figure 5a,b, LIGHT achieves a better fit in Figure 6. Rodgers information content during cycles 3, 5 and 7

the assimilation, only partially kept in the forecast

Improving dynamical balances could positively
impact forecast RMS errors

Time-dependent covariance P'shows direct relationship to obs.
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Figure 3. (a) Background winds at 850mb, (b) wind difference [A-B] and (c) absolute vorticity C T e o

(b) 6 Forecast RMS Errors

difference [A-B] (LIGHT) Figure 5. Analysis (a) and (b) observed CAPE (light experiment) Figure 7. Lightning observations during assimilation cycles 3, 5 and 7

Summary & Future Work

Acknowledgements & References

The assimilation of lightning data adds new information to the system
Lightning DA impacts winds, advection and absolute vorticity
Time-dependent forecast error covariance (P;) follows the observations
throughout the assimilation period
Will include operational observations to constrain the fit in the
analysis and to test combined GLM and ABI observations from the future
GOES-R
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