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Introduction & Goals 
  This study demonstrates the utility of assimilating lightning data from the  
    GLM instrument onboard the future GOES-R for severe weather    
    applications 
  Proxy lightning DA into a NWP model with a hybrid variational-ensemble  
     DA system is investigated  
  Case Study: April 28-29, 2011 tornado outbreak – Southeastern, United  
     States (Tuscaloosa, Alabama) 
  The goal is to correct the intensity and location of severe thunderstorms  
    during the analysis and short-time (6-hr) forecast steps 

DA & Model System Set-up 

Observation Operator Correction 

R  E  S  U  L  T  S 

  WRF-NMM, resolution --- 27 and 9km 

  The Maximum Likelihood Ensemble Filter (MLEF) is used as a hybrid   
     variational-ensemble DA system 

  32-ensembles at 6-hr assimilation interval 

  Lightning data from the World Wide Lightning Location Network (WWLLN) --  10km  
     location accuracy 

  Control variables: T, Q, U, V, PD, PINT, CWM 

   2 experiments with lightning data assimilation (LIGHT) and without data assimilation  
     (NODA) 

Evaluating the potential impact of lightning data assimilation  
utilizing hybrid variational-ensemble methods	
  

Lightning Observation Operator  
   Starts by calculating 
maximum vertical velocity 
(wmax) from WRF-NMM 

  An empirical relationship 
between lightning flash rate 
and vertical velocity is used 

   Flow diagram of the 
MLEF DA system and Obs. 
Opt. shown in Figure 1 Figure 1. Flow chart of the MLEF DA system and  

lightning observation operator  

Summary & Future Work 
  The assimilation of lightning data adds new information to the system 
  Lightning DA impacts winds, advection and absolute vorticity 
  Time-dependent forecast error covariance (Pf) follows the observations  
    throughout the assimilation period 
  Will include operational observations to constrain the fit in the        
  analysis and to test combined GLM and ABI observations from the future              
  GOES-R  
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Rodgers Information Content of Observations 

Statistics 

Synoptic Representation 

   Assume a multiplicative correction 
to the lightning observation operator                   
                  where           is the 
unknown multiplication parameter  

 The cost function will have an 
adjustable parameter           : 

 Where RL = obs. error covariance, α0 
= guess value, W = guess uncertainty 
matrix 
   Search for the optimal parameter 
αopt > 0 that minimizes the cost 
function  

Figure 2. PDF Innovations – histograms, before and 
after correction. Before correction (left), the 
innovation vector was skewed and positively biased. 
After correction (right) it was  normalized.  
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  With a typical guess value of α0= 1, the 
solution becomes (1), where Nobs = # of 
observations, diag(RL)=r0 and diag(W)=w0 
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Figure 3. (a) Background winds at 850mb, (b) wind difference [A-B] and (c) absolute vorticity 
difference [A-B]  (LIGHT) 

  The following contour plots, correspond to the LIGHT experiment 
at April, 28 0000UTC, the touch-down time of the Tuscaloosa, 
Alabama tornado 

  The region of strongest winds (Fig. 3a) coincides with the area 
where the lightning observations are located (Fig. 7b) (ellipses) 

 By assimilating lightning, the analysis increased making advection 
and absolute vorticity at 850mb go up (Figure 3b,c) 

 The wind difference, suggests that stronger vorticity is being 
advected into the region of high CAPE gradient (dry-line) (Figure 4) 

  CAPE at  forecast, exists in the place of observed strong CAPE 
gradient (Figure 4) 

   RMS errors are calculated from a super-obed 
domain containing all the lightning observations at 
10km resolution 

  From Figure 5a,b, LIGHT achieves a better fit in 
the assimilation, only partially kept in the forecast 

  Improving dynamical balances could positively 
impact forecast RMS errors 

Figure 4. (a) background and (b) observed CAPE (LIGHT experiment) 

Figure 5. Analysis (a) and (b) observed CAPE (light experiment) 

Figure 6. Rodgers information content during cycles 3, 5 and 7 

Figure 7. Lightning observations during assimilation cycles 3, 5 and 7 

   Use information theory (e.g. entropy) as an objective, pdf-based 
quantification of information (Rodgers 2000; Zupanski et al. 2007): 
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   Time-dependent covariance Pf shows direct relationship to obs. 
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