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Geomagnetic data, from the Earth’s surface to the core-mantle boundary

I continuous satellites records since 1999:
global coverage⇒ cleaner separation of internal and external sources

I observatories: continuous series, absolute intensities since 1840
I navigation: since late XVIth century, orientation only before 1840
I archeological artifacts and sediments: indirect records over the past 10,000 yrs
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Fig. 1- data frequency from

available databases of the

archeomagnetic, historical,

observatory and satellite era.

I Downward continuation through an
electrically insulating mantle (Fig. 2) of
noisy observations yo at or above the
Earth’s surface
I radial potential magnetic field Br at

the core surface:
yo = H(Br) + eo (1)

I indirect measurements of the core
state (ill-conditioned Green’s
functions in H)

Fig. 2- From Fournier et al (2010)

Time-variable and time-correlated errors on the secular variation ∂Br/∂t

I Field changes related to horizontal core motions uh
through the core surface radial induction equation:

∂Br

∂t
= −∇h · (uhBr) + η∇2Br (2)

with accuracy of the secular variation estimate
depeding on both epochs and length-scales (Fig. 3)

I unresolved field features B′r at small length-scales
(` < 800 km at the core surface), with extrapolated
decadal time-scales⇒ time-correlated errors of
representativeness (Gillet et al, 2009)

er = −∇h · (uhBr ′) (3)

Fig. 3- Ensemble of realizations of the secular variation spherical harmonic coefficients

dg0
1/dt (top) and dg5

10/dt (bottom), in nT/yr, with the average value in black (from Gillet

et al, submitted).

Geomagnetic power spectrum S(f ) and stochastic modeling

I Observed series suggest the process X sampled by geomagnetic records is:
I C0 (continuous, not differentiable) on centenial periods and longer (Fig. 5)
I C1 (continuous, once differentiable) from 5 to 100 yrs periods (Fig. 6)

I spectral densities (Fig. 4) are compatible with Auto-Regressive (AR) processes and
stochastic differential equations (below W stands for a white noise process)
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Damped-oscillator-AR(2)
Constable & Johnson 2005

Panovska 2012
De Santis et al 2003

I 100− 105 yrs periods: S(f ) ∝ f−2

I AR-1 process with τ1 ∼ 20,000 yrs, e.g.
∂X
∂t

+
X
τ1

= W ,

I if valid for the dipole (Fig. 5), is it still the case for
smaller length-scales?

I 5− 100 yrs periods: S(f ) ∝ f−4

I AR-2 process with τ2 ∼ 1000 yrs, e.g.
∂2X
∂t2 −

3X
τ2

2
= W .

⇒ the induction equation (2) suggests the flow is
governed by an AR-1 stochastic differential
equation of the form

∂uh

∂t
+

uh

τu
= w (4)

Fig. 4- Composite power spectral density (PSD) for

several geomagnetic series, superimposed with that of

some AR processes.

Fig. 5- Virtual axial dipole moment (VADM) from

archeomagnetic records (Genevey et al, 2008).

Fig. 6- Eastward component of dB/dt at the Niemegk

observatory (Germany).

I aim at coupling (2) and (4) with an Ensemble Kalman Smoother (Evensen & Van Leeuwen,
2000), using an state augmentation approach (e.g. Reichle et al, 2002) to account for
time-correlated errors in equation (3).
This is made possible by the small size of this problem, O(500) parameters / epoch.

I NB: instantaneous flow accelerations are meaningless in this framework, only flow
increments between two epochs make sense.
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Sampling rate of the core state

I high sampling rate in modern (observatories and satellite) data, but...
I 6 months day-time (i.e. noisy) data at high latitudes: fake global coverage
I ambiguity between core and external (magneto- and ionospheric) sources
I mantle conductivity = low-pass filter: which cut-off frequency?

I monthly to interannual periods:
I shall we extrapolate the AR-2 process at periods below O(1) year?
I should the process be different at periods shorter than the 4 yrs period of deterministic

torsional (i.e. zonal and geostrophic) Alfvén waves, responsible for length-of-day (LOD)
changes at 6–9 yrs periods (after Gillet et al 2010) ?

Fig. 7- Torsional Alfvén waves (left), as detected from observatory records, travelling from the inner core (s = 0.35) to the equator of the

outer core (s=1), and their 6–9 yrs band-pass signature (right) on the LOD changes compared to the observations.

Imaging magnetic forces inside the core with a deterministic model?

I 3-dimensional sequential (Liu et al, 2007; Fournier et al,
2011) and variational (Li et al, 2011) attempts at
estimating the core state, but filter out rapid variations

I in the Earth’s core: inertial waves period τi � magnetic
Afvén waves period τa� magnetic diffusion time τd

⇒ large length-scale transient motions invariant along the
rotation axis ez (Jault, 2008), cf. Lehnert number

λ = τi/τa ∼ 10−4 .

⇒ weak magnetic diffusion at large length-scales, as
measured by the Lundquist number

S = τd/τa ∼ 105 .

I motivates a diffusiveless quasi-geostrophic model for
z-invariant equatorial motions (following Canet et al, 2009)

ue(s, φ, t) = ez ×∇ψ ,
and the z-averaged quadratic quantities

q =
1

2H

∫ H

−H

[
B2

s ,B
2
φ,BsBφ

]
dz ,

with H(s) the half-height of a fluid column, and

β(s) ∝ 1
λ

dH
ds

the coriolis parameter:

β
∂2ψ

∂t∂φ
= F (ψ,q) (5)

I coupling eqns (1), (2) and (5) using an EnKF
I to obtain a first image of magnetic forces q:
I to forecast the field evolution (candidate to the

International Geomagnetic Reference Field)

Fig. 8- Example of equatorial maps for ψ (top)

and dψ/dt (bottom) obtained from satellite data

in 2005 and equation (2), after Gillet et al (2009).

(a) must account for large uncertainties on ψ, even more on ∂tψ

(b) favored by a suspected steep spatial power spectrum for q
(c) bounded value problem (positiveness + Cauchy-Schwartz constraint on the unknown q)
(d) reconcile stochastic constraint (4) with (5): consider flow increments instead of ∂tψ.
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