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Abstract
Identifying successful ”noise reduction” as such remains a challenge in applications where the ”true” values are

not know a priori. We suggest shadowing ratios as a measure of noise reduction when the task at hand involves
prediction. Initial condition uncertainty will more or less always limit the lead time of a chaotic model, even when
that model reproduces the system dynamics perfectly. Since in reality, observations from such systems tend to be
clouded by measurement error, the maximum lead time we can expect to accurately predict using the model will
be short. Data assimilation techniques attempt to improve our state estimates, we introduce a new measure which
allows us to estimate the quality of these techniques. A model trajectory shadows for as long as it is consistent with
the noise model of the observed states. We define the shadowing ratio as the ratio of the length of time the model
shadows using the assimilated initial conditions to the length of time the model shadows using some reference data
assimilation technique. We use the measure to evaluate the effectiveness of one assimilation technique in particular,
Gradient Descent of Indeterminism (GDI). Since GDI requires derivative information from the system, we compare
the effectiveness of the algorithm when using the exact derivative matrix and when approximating using a forward
difference technique. Finally, using the Lorenz’96 system, we show how GDI outperforms another assimilation method,
4DVAR as the system becomes more nonlinear.

1 Introduction

Successful prediction of complex process has a huge value to society, particularly in areas like mete-
orology where it can affect many lives. A modeller of chaotic dynamical systems however, faces big
challenges. Even with a perfect model of the dynamics of a system, if past observations are clouded by
measurement error, accurate predictions at long lead times will be hard to achieve. Data assimilation
is the process of improving on these ”noisy” observations by attempting to recover the true trajectory.
Shadowing lengths measure how long the model trajectory stays close to reality, for a good model
prediction of the future, clearly we desire that these lengths should be as long as possible. We show
how we can use ratios of these values to compare models and in particular, assimilation techniques.

2 Shadowing

A shadowing length is time a trajectory stays consistent with the observational noise of future obser-
vations. For forecasting purposes it is desirable for these lengths of time to be as long as possible.

definition 1A model trajectory shadows for time τι if it is consistent with the observational

uncertainty at all times t, 0 ≤ t ≤ τι.

The conditions of a trajectory shadowing observations depend on the observational noise model which
we assume to be known. For bounded noise, these condtions are straightforward, for example if the noise
model is distributed as U(−ǫ, ǫ), the noise is bounded by ǫ. Therefore, a trajectory stops shadowing
the observations at the smallest value of i such that |xi− Si| > ǫ where xi and Si are points from our
model trajectory and the ’noisy’ observations respectively.
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Figure 1: Two shadowing trajectories of x1 of the 10 dimensional Lorenz ’96 system observed every 19.2 hours, the
red circles are ’noisy’ observations with noise model U(−1, 1), the distance between the crosses is where a trajectory
is said to shadow the point. The green line shadows for 76.8 hours and the blue line shadows for 212.4 hours. The
lines are solid when they shadow the observations and dashed when they don’t.

3 Shadowing Ratios

We introduce shadowing ratios as a way of comparing assimilation techniques. When choosing an
assimilation method, it is desirable that on average at least, the resulting trajectory found from feeding
initial conditions from our ’new’ method, should be able to shadow longer than the trajectory from
some reference method. Shadowing ratios give us an idea of the magnitude of these differences.

definition 2We define a shadowing ratio as

γ =
τnew

¯τref
(1)

where τnew is the shadowing length of an individual set of initial conditions obtained using our

’new’ assimilation method and τref is the mean or median shadowing length for initial conditions

assimilated using some reference method.

When on average, γ > 1, we have an improvement on our reference method. We define each shadowing
ratio to correspond to the shadowing length of one set of assimilated noise realisations divided by the
mean or median shadowing lengths of the reference assimilation method, that way we can look at
distributions of shadowing ratios. Since shadowing lengths are likely to be skewed in distribution,
using the mean or the median shadowing length of the reference method as the denominator changes
the results fairly significantly. Each tells a slightly different story, so it is often useful to look at both.

4 Gradient Descent of Indeterminism

One particular method of data assimilation is Gradient Descent of Indeterminism (GDI). The algorithm
uses the well known optimisation method, ’gradient descent’ to reduce the indeterminism (the distance
||xi+1 − F (xi)||) of a pseudo-orbit. Iterating repeatedly, reduces the indeterminism and moves the
points asymptotically towards a system trajectory. The resulting pseudo-orbit can give us an estimate
of past and current conditions.

Figure 2: The midpoint of the assimilation window for the Lorenz ’63 system of equations showing noisy observa-
tions(red) and results of assimilation (green), the ’truth’ is the centre of the black circle. Both plots show the same
points but from a different perspective.

5 Examples

The gradient descent algorithm uses derivative information to attempt ’noise reduction’. This is not
always possible to do analytically, in these cases we can use some approximate method to estimate
the jacobian matrix, in this case a forward difference method. We can use shadowing ratios to assess
the impact of this substitution. Figure 3 shows the shadowing ratios for GDI applied to the Duffing
Map with a=2.75 and b=0.2 and white trimmed gaussian noise added with σ = 0.05, trimmed at 3
standard deviations. Our reference method here is using no assimilation and running the model from
our observations. It is hard to distinguish between the two sets of shadowing ratios and we can conclude
that a lack of gradient information makes little difference to Gradient Descent of Indeterminism.
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Figure 3: Top left: mean (blue) and median (green) shadowing ratios after assimilating using GDI with exact
(solid line) and approximate (dashed line) jacobian. Top right: The same as top left but showing shadowing lengths
instead of shadowing ratios. Bottom left: Proportion of median shadowing ratios greater than 2 (red), 4 (green) and
8 (blue). Bottom right: Histogram of median ratios using exact(blue) and approximate (red) jacobian.

Figure 4 shows the shadowing ratios for GDI and 4DVAR as a function of the F parameter in the
Lorenz ’96 system with the use of observations as initial conditions (no assimilation) as the reference
method. Using the test suggested in [2] (where the length of time the model can be approximated
using a linear regime is used as a measure of nonlinearity), we show, using shadowing ratios, that as
the system becomes more nonlinear, GDI far outperforms the well known method 4DVAR.
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Figure 4: Plot of shadowing ratios of GDI and 4DVAR for a perfect model of a 4 dimensional lorenz ’96 system
for different values of parameter F. The assimilation window is 32 time steps (38.2 system hours) and the noise level
is 25 percent gaussian white noise. The green line (right hand axis) shows the effect of increasing F on the length
of the linear regime, a short linear regime indicates high nonlinearity. The solid blue line (left hand axis) shows the
shadowing ratios of GDI with 95 percent bootstrap confidence intervals, plotted against F, and the blue dashed line
shows the same for 4DVAR. GDI seems to be less affected by the increase in nonlinearity than 4DVAR.

6 Conclusion

In the context of forecasting, the choice of data assimilation is not trivial, shadowing ratios provide us
with a logical way of comparing such techniques in that they will alway choose the one which makes
the model trajectory close to reality for as long as possible.
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