
Performance Bounds for Particle Filters using

the “Optimal” Proposal Density
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Overview

. Simplest particle filter requires very large ensemble size, growing
exponentially with the problem size.

. Can the use of the optimal proposal density fix this?
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Preliminaries

Notation

. follow Ide et al. (1997) generally, except:
. . . dim(x) = Nx, dim(y) = Ny, ensemble size = Ne

. . . superscripts index ensemble members

. ∼ means “distributed as,” e.g. x ∼ N(0, 1). Also used for
“asymptotic to”

. state evolution: xk =M(xk−1) + ηk

. observations: yk = H(xk) + εk

Interchangeable terms

. particles ≡ ensemble members

. sample ≡ ensemble
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Preliminaries: The Simplest Particle Filter

. begin with members xik−1 and weights wi
k−1 that “represent”

p(xk−1|yok−1)

. compute xik by evolving each member to tk under the system dynamics

. re-weight, given new obs yok: wi
k ∝ wi

k−1p(y
o
k|xik)

. (resample)

4



Preliminaries: Sequential Importance Sampling

Basic idea

. suppose p(x) is hard to sample from, but π(x) is not.

. draw {xi} from π(x) and approximate

p(x) ≈
Ne∑
i=1

wiδ(x− xi), where wi ∝ p(xi)/π(xi)

. π(x) is the proposal density
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Preliminaries: SIS (cont.)

Perform importance sampling sequentially in time

. Given {xik−1} from π(xk−1), wish to sample from p(xk, xk−1|yok)

. choose proposal of the form

π(xk, xk−1|yok) = π(xk|xk−1, y
o
k)π(xk−1)

. update weights using

wi
k ∝

p(xik, x
i
k−1|yok)

π(xik, x
i
k−1|yok)

=
p(yok|xik)p(xik|xik−1)

π(xik|xik−1, y
o
k)

wi
k−1
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Preliminaries: SIS (cont.)

PF literature shows that choice of proposal is crucial

Standard proposal: transition density from dynamics

. π(xk, xk−1|yok) = p(xk|xk−1)

. wi
k ∝ p(yok|xik)

. members at tk generated by evolution under system dynamics,
as in EF
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Preliminaries: SIS (cont.)

“Optimal” proposal: Also condition on most recent obs

. π(xk, xk−1|yok) = p(xk|xk−1, yok)

. wi
k ∝ p(yok|xik−1)

. members at tk generated, in a sense, by DA

. optimal in sense that it minimizes variance of weights over xik

. several recent PF studies use proposals that either reduce to or are
related to the optimal proposal (van Leeuwen 2010, Morzfeld et al.
2011, Papadakis et al. 2010)

8



Degeneracy of PF Weights

. degeneracy ≡ maxiw
i
k → 1

. common problem, well known in PF literature

. for standard proposal, Bengtsson et al. (2008) and Snyder et al.
(2008) show Ne must increase exponentially as problem size increases
in order to avoid degeneracy

. What happens with optimal proposal?
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A Simple Test Problem

Consider the system

xk = axk−1 + ηk−1, yk = xk + εk

where ηk−1 ∼ N(0, q2I) and εk ∼ N(0, I).

For standard proposal:

yk|xk ∼ N(xk, I), wi
k ∝ exp

(
−1
2
|yk − xik|2

)
For optimal proposal:

yk|xk−1 ∼ N
(
axk−1,

(
1 + q2

)
I
)
, wi

k ∝ exp

(
−
|yk − axik−1|2

2 (1 + q2)

)
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A Simple Test Problem (cont.)

. histograms of maxiw
i
k for Ne = 103, a = q = 1/2. 103 simulations.

. optimal proposal clearly reduces degeneracy
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Behavior of Weights

Define

V (xk, xk−1, yk) = − log(wk/wk−1) =

{
− log p(yk|xk), std. proposal
− log p(yk|xk−1), opt. proposal

Interested in V as random variable with yk known and xk and xk−1

distributed according to the proposal distribution at tk and tk−1, respectively.

Suppose each component of obs error is independent.

. p(yk|xk), p(yk|xk−1) can be written as products

. V becomes a sum over log likelihoods for each component

. if terms in sum are nearly independent, V → Gaussian as Ny →∞

. infer asymptotic behavior of maxwi
k from known asymptotics for

sample min of Gaussian
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Behavior of Weights (cont.)

Let τ2 = var(V ). Then for large Ne and large τ ,

E(1/maxwi
k) ∼ 1 +

√
2 logNe

τ

(Bengtsson et al. 2008, Snyder et al. 2008)

As τ2 increases, Ne must increase as exp(2τ2) to keep E(1/maxwi) fixed.
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The Linear, Gaussian Case

Analytic results possible for linear, Gaussian case with general R = cov(εk),
Q = cov(ηk) and Pk = cov(xk).

Proceed by transformation in obs space that simultaneously diagonalizes
either R and HPkH

T , or R+HQHT and HMPk−1(HM)T .

Then

τ2 =

Ny∑
j=1

λ2j (λ
2
j/2 + y2k,j),

where λ2j are eigenvalues of

A =

{
R−1/2HPkH

TR−1/2, std. proposal

(HQHT + R)−1/2HMPk−1(HM)T (HQHT + R)−1/2, opt. proposal.
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Simple Test Problem, Revisited

V (xk, xk−1, yk) =

{
− log p(yk|xk), std. proposal
− log p(yk|xk−1), opt. proposal

2V (xk, xk−1, yk) =


∑Ny

j=1(yk,j − xk,j)2, std. proposal(
1 + q2

)−1∑Ny

j=1(yk,j − axk−1,j)
2, opt. proposal

τ2 = var(V ) =


Ny(a

2 + q2)
(
3
2a

2 + 3
2q

2 + 1
)
, std. proposal

Nya
2
(
3
2a

2 + q2 + 1
)
/(q2 + 1)2, opt. proposal
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Simple Test Problem, Revisited (cont.)

τ2 = var(V ) =


Ny(a

2 + q2)
(
3
2a

2 + 3
2q

2 + 1
)
, std. proposal

Nya
2
(
3
2a

2 + q2 + 1
)
/(q2 + 1)2, opt. proposal

. τ2(opt. proposal) always less than or equal to τ2(std. proposal)

. τ2 from the two proposals is equal only when q = 0

. opt. proposal reduces τ2 by an O(1) factor for reasonable values of a
and q; a = q = 1/2 implies a factor of 5 reduction in τ2.
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Simple Test Problem, Revisited (cont.)

. Theoretical prediction for E(1/maxwi) vs. simulations. Expectation
is based on 103 realizations.
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Simple Test Problem, Revisited (cont.)

. minimum Ne such that E(1/maxwi) ≥ 1/0.8 for standard proposal
(circles) and optimal proposal (crosses) for a = q = 1/2.

. ratio of slopes of best-fit lines is 4.6, vs. asymptotic prediction of 5
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Ny, Nx and Problem Size

τ2 = var(log likelihood) measures “problem size” for PF

. as τ2 increases, Ne must increase as exp(2τ2) if E(1/maxwi) fixed.

Related to obs-space dimension

. in simple example, τ2 ∝ Ny

. given by sum over e-values of obs-space covariance in general linear,
Gaussian case—like an effective dimension

Analogy of τ2 to dimension is incomplete

. τ2 depends on obs-error statistics, increasing as R decreases

. τ2 depends on proposal
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Ny, Nx and Problem Size (cont.)

τ2 depends explicitly only on obs-space quantities

How does Nx affect weight degeneracy?

. asymptotic relation of τ2 and E(1/maxwi) requires V (xk, xk−1, yk)
to be ∼ Gaussian over xk

. ∼ Gaussianity of V (xk) only if Nx = dim(x) is large and components
of x are sufficiently independent
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Ny, Nx and Problem Size (cont.)

. log of pdf of V : Ny = 1, 3, 10, 100; x ∼ N(0, I), H = I, ε ∼ N(0, I)

. recall that max weight depends on left-hand tail of p(V ), which
changes greatly as Nx increases and V → Gaussian
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Summary

. As was the case for the standard proposal, the optimal proposal
requires Ne to increase exponentially with the “problem size” to
avoid degeneracy.

. Exponential rate of increase is quantitatively smaller for the optimal
proposal; necessary ensemble size may therefore be much smaller in
a given problem.

. Benefits of optimal proposal dependent on magnitude of system noise.

. (In some cases, possible to enhance performance of optimal proposal
by artificially increasing system noise in forecast model used in
filtering.)
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Recommendation

New PF algorithms intended for high-dimensional systems should be
evaluated first on the simple test problem given here.
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