Performance Bounds for Particle Filters using
the “Optimal” Proposal Density

Y o) Ne =32
1.8 x « N =64
. * Ne =128
1.6
1.4 %
©e
1.2 X
_ *
S * ©
X 1 O
®©
= *
~ X
~ 0.8 -
L *
* o .=
0.6 * x
X
0.4 4
0.2
0 T T T T T T T T T 1
0 0.2 0.4 0.6 0.8 1 1.2 14 1.6 1.8 2

(2 1og Ne)1/2/’t

> Chris Snyder
National Center for Atmospheric Research, Boulder Colorado, USA



Overview

> Simplest particle filter requires very large ensemble size, growing
exponentially with the problem size.

> Can the use of the optimal proposal density fix this?



Preliminaries

Notation

> follow Ide et al. (1997) generally, except:
... dim(x) = N, dim(y) = N,,, ensemble size = N,
... superscripts index ensemble members

> ~ means “distributed as,” eg. x ~ N(0,1). Also used for
“asymptotic to"

> state evolution: xi = M (xpx_1) + Mk

> observations: y, = H(Xx) + €

Interchangeable terms
> particles = ensemble members

> sample = ensemble



Preliminaries: The Simplest Particle Filter

> begin with members x!_, and weights w!_, that “represent”
P(Xk—1ly3_1)

> compute X%, by evolving each member to t; under the system dynamics

> re-weight, given new obs y¢: w! oc wi_ p(y9|x%)

> (resample)



Preliminaries: Sequential Importance Sampling

Basic idea
> suppose p(x) is hard to sample from, but 7(x) is not.

> draw {x'} from 7(x) and approximate

p(x) ~ iwié(x —x"), where w" o p(x*)/m(x")

> 7(x) is the proposal density



Preliminaries: SIS (cont.)

Perform importance sampling sequentially in time
> Given {x}_,} from m(xx_1), wish to sample from p(xx, xx_1|y?)
> choose proposal of the form
(X, Xk—1]Y5) = T(Xk|Xp—1, ¥2) 7 (Xi—1)
> update weights using
PO XialyR) PR IX)p(xg[xg)

T(Xp X1 ¥7)  m(x[x 1. ¥7)

Wi _1



Preliminaries: SIS (cont.)

PF literature shows that choice of proposal is crucial

Standard proposal: transition density from dynamics
> 7 (X, Xp—1]Y}) = P(Xk|Xk—1)
> wj < p(yglx;)

> members at t; generated by evolution under system dynamics,
as in EF



Preliminaries: SIS (cont.)

“Optimal” proposal: Also condition on most recent obs
> Xk Xp—1|¥7) = P(Xk|Xk-1,¥7)
> wy o p(yplxj_q)
> members at {5 generated, in a sense, by DA
> optimal in sense that it minimizes variance of weights over x%
>

several recent PF studies use proposals that either reduce to or are
related to the optimal proposal (van Leeuwen 2010, Morzfeld et al.
2011, Papadakis et al. 2010)



Degeneracy of PF Weights

> degeneracy = max; w!, — 1
> common problem, well known in PF literature

> for standard proposal, Bengtsson et al. (2008) and Snyder et al.
(2008) show N, must increase exponentially as problem size increases
in order to avoid degeneracy

> What happens with optimal proposal?



A Simple Test Problem

Consider the system

Xg = aXg—1 + NMk—1, Yi = Xk T €k

where ni_1 ~ N(0,¢*l) and €, ~ N(0,1).

For standard proposal:

febes ~ NG ), ox exp (3l — xiP)

For optimal proposal:

y ‘xk 1NN(CLXk 1 (1—|—q2) I) w' X exp _|Yk_axrléc—1|2
k — —1 ) k 2(1+q2)



A Simple Test Problem (cont.)

occurrences occurrences

occurrences

> histograms of max; wt for N, = 10°, a = ¢ = 1/2. 10° simulations.

> optimal proposal clearly reduces degeneracy
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Behavior of Weights

Define

— log p(y.|xx), std. proposal

V (Xp, X1, Y1) = — log(wi/wi_1) = { —log p(y.|xx—1), opt. proposal

Interested in V' as random variable with y, known and x; and xx_;
distributed according to the proposal distribution at ¢ and t;_1, respectively.

Suppose each component of obs error is independent.
> p(Yi|Xk), p(Yi|Xk_1) can be written as products

> V becomes a sum over log likelihoods for each component
> if terms in sum are nearly independent, V' — Gaussian as N, — oo
>

infer asymptotic behavior of maxw?! from known asymptotics for
sample min of Gaussian



Behavior of Weights (cont.)

Let 72 = var(V'). Then for large N, and large T,

Vv 2log N,

T

E(1/maxw) ~ 1+

(Bengtsson et al. 2008, Snyder et al. 2008)

As 72 increases, N, must increase as exp(27?) to keep E(1/ max w®) fixed.



he Linear, Gaussian Case

Analytic results possible for linear, Gaussian case with general R = cov(eg),
Q = cov(nx) and Py = cov(xy).

Proceed by transformation in obs space that simultaneously diagonalizes
either R and HP,H", or R+ HQH"' and HMP,_;(HM)T.

Then
Ny
=Y X024
j=1

where A\? are eigenvalues of

A R_1/2HPkHTR_1/2, std. proposal
| (HQH" + R)"2HMP;,_;(HM)T(HQH" + R)~/2 opt. proposal.



Simple

est Problem, Revisited

—lo Xk ), std. proposal
V (%, X1, Y1) :{ g P(Yrlxk) prop

2V(xk7 Xk—1, yk) =3

T = \Vvar

(V)

—log p(y,|xx_1), opt. proposal

( N
Zj:yl(yk,j - il?‘k,j)2, std. proposal

-1 N
(1 + q2) Zj:yl(?/k,j - CLiUk—Lj)Q, opt. proposal

i

Ny(a2 + 92) (%az + %qQ + 1) : std. proposal

Nya? (%QQ +q° + 1) /(¢*> +1)?, opt. proposal




Simple Test Problem, Revisited (cont.)

( N,(a* + ¢°) (%aQ + %q2 + 1) : std. proposal

2
P— p—
7" =var(V) = « Nya2 (3% + >+ 1) /(¢* +1)%, opt. proposal

> 72(opt. proposal) always less than or equal to 72(std. proposal)
> 72 from the two proposals is equal only when ¢ = 0

> opt. proposal reduces 72 by an O(1) factor for reasonable values of a

and ¢; a = ¢ = 1/2 implies a factor of 5 reduction in 72



Simple Test Problem, Revisited (cont.)

> Theoretical prediction for E(1/maxw?) vs. simulations. Expectation
is based on 10° realizations.
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Simple Test Problem, Revisited (cont.)

> minimum N, such that E(1/maxw®) > 1/0.8 for standard proposal
(circles) and optimal proposal (crosses) for a = ¢ = 1/2.

> ratio of slopes of best-fit lines is 4.6, vs. asymptotic prediction of 5
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N,, N, and Problem Size

72 = var(log likelihood) measures “problem size” for PF

2

> as 72 increases, N, must increase as exp(27?) if £(1/maxw") fixed.

Related to obs-space dimension
> in simple example, 72 Ny,

> given by sum over e-values of obs-space covariance in general linear,
Gaussian case—like an effective dimension

Analogy of 72 to dimension is incomplete
> 72 depends on obs-error statistics, increasing as R decreases

> 72 depends on proposal



N,, N, and Problem Size (cont.)

72 depends explicitly only on obs-space quantities

How does IV, affect weight degeneracy?

> asymptotic relation of 72 and E(1/ maxw") requires V (X, X1, Ys)
to be ~ Gaussian over x;,

>~ Gaussianity of V(xx) only if N, = dim(x) is large and components
of x are sufficiently independent



N,, N, and Problem Size (cont.)

> log of pdf of V: N, =1, 3, 10, 100; x ~ N(0,1), H=1, e ~ N(0,1)

> recall that max weight depends on left-hand tail of p(V'), which
changes greatly as IV, increases and V' — Gaussian
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Summary

> As was the case for the standard proposal, the optimal proposal
requires N, to increase exponentially with the “problem size” to
avoid degeneracy.

> Exponential rate of increase is quantitatively smaller for the optimal
proposal; necessary ensemble size may therefore be much smaller in
a given problem.

> Benefits of optimal proposal dependent on magnitude of system noise.

> (In some cases, possible to enhance performance of optimal proposal
by artificially increasing system noise in forecast model used in
filtering.)



Recommendation

New PF algorithms intended for high-dimensional systems should be
evaluated first on the simple test problem given here.
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