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Data assimilation

Uncertainty quantification paradigm
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Uncertainty quantification

• Make predictions with error estimates.

• Use random variables in modeling.

• Obtain information about random 
variables from incomplete and noisy data.

• Random variables are typically non-
Gaussian and often high-dimensional.

Data
True state

Prediction
Uncertainty

Key requirement*: draw samples from non-Gaussian random variables

*Recognized in applied math and geophysics: sessions about efficient sampling at  
  SIAM UQ Meeting 2012, and American Geophysical Union Fall Meeting 2012.

Uncertain model

Incomplete, noisy
observations

Prediction + uncertainty
t

X

, the target



Implicit sampling
 Monte Carlo method for 

importance sampling
 No forecast distribution, 

work directly with target
 Apply particle by particle
 Use numerical 

optimization to identify 
high probability regions 
based on model and 
observations

 Focus the sampling 
within these regions

Implicit sampling
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Key ideas

• Identify regions of high probability 
through numerical optimization.

• Focus the sampling on these regions.

• Black dot: mode
• Red dot: sample
• Yellow area: < 3 std. devs.
• Blue area: > 3 std. devs.



What makes this a good idea?
 Nonparametric

 Strong theoretical basis for nonlinear/non-Gaussian 
problems

 Sequential/on-line
 Can assimilate any number of observations with each 

application and discard them thereafter
 Optimized for observations

 Computational resources are directed toward important 
regions of sample space

 Avoids sampling “blindly” like many particle filters, i.e., 
produces samples with non-negligible information

 Many implementations, tuned for application ...



Twin experiments

Shallow water

Predator-prey

Geomagnetism



1. Shallow water
 State dimension O(30k): height and 2 velocity 

components on a 100x100 horizontal grid
 Weak dissipation + strong advection + forcing by 

wave breaking = strong nonlinearity
 Assimilate velocity data every time step at 16 points 

using 10 particles
 Cost fcn.,

 Target is Gaussian, find x* and H from Kalman filter 
algebra



Shallow water

Bottom topography 
contours

Very shallow = strong 
forcing by breaking

Observation points 
indicated with asterisk

Comparison to follow 
indicated at the circled 
point
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Shallow water

Good agreement between 
estimate and twin

Assimilation necessary: 
noticeable phase shift from 
deterministic and twin 
solutions after 5000 secs
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2. Predator-prey
 Estimate 2 state variables P (prey) and Q (predator) 

and 7 unknown parameters 𝜃 = (𝜃1, ..., 𝜃7).

 State and parameters have only one sign
 Transform (anamorphosis) to variables that are more 

nearly Gaussian, e.g., ζ = (log P, log Q, log 𝜃)



Predator-prey
 Assimilate 50 observations every 50 times steps:

 all at once (smoother), cost function is

 or sequentially (filter), cost function is

 In transformed variable ζ, cost is nearly, but not 
exactly quadratic:
 optimize to find its min ζ*, and Hessian H at ζ*
 use Gaussian importance sampling



Predator-prey
(smoother)
Comparison of state 
estimate in two cases: (a,b) 
parameters fixed at 
incorrect values, (c) 
estimated parameters

240 particles
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(a) Smoother, incorrect parameters
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(b) Smoother, incorrect parameters (zoom)
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Predator-prey
(smoother)
Rank histogram computed 
with 240,000 particles

Noticeable drop-off in 
distribution before zero
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Predator-prey
(filter)
2400 particles for implicit 
and SIR filters and 
240,000 for EnKF

EnKF covariance blows up, 
works with denser 
observations
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(b) SIR, estimated parameters
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3. Geomagnetism
 SPDEs for velocity and magnetic field
 Legendre spectral elements to transform to system of 

very stiff SDEs
 Observations of magnetic field only at 200 equally 

spaced locations
 Cost is far from quadratic: many steps between 

observations



Geomagnetism
If target is far from 
Gaussian (skew, kurtosis, 
etc.), use random maps to 
sample:

1. Draw z ~ N(0,I)

2. Cholesky factor H = LLT

3. Search along L-Tz until 
proposal and target have 
the same level set

λ

Random direction L -T
z

J(x* + λL-Tz) = J* + 0.5 zTz
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Figure 5: Filtering results for data collected at a high spatial resolution (200
measurement locations). The errors at t = 0.2 of the implicit particle filter
(red), EnKF (purple) and SIR filter (green) are plotted as a function of the
number of particles. The error bars represent the mean of the errors and
mean of the standard deviations of the errors.

merical experiments and vary the availability of the data in time, as well as
the number of particles. Figure 6 shows the results for the implicit particle
filter, the simplified implicit particle filter, the EnKF and the SIR filter for
200 measurement locations and for r = 1, 2, 4, 10.

We observe from figure 6, that the error statistics of the implicit particle
filter have converged, so that there is no significant improvement when we
increase the number of particles to more than 10. In fact, the numerical
experiments suggest that no more than 4 particles are required here. Inde-
pendent of the gap between the observations in time, we observe an error
of less than 1% in the observed variable b. The error in the unobserved
variable u however depends strongly on the gap between observations and,
for a large gap, is about 15%.

The reconstructions of the observed variables by the simplified implicit
particle filter are rather insensitive to the availability of data in time and,
with 20 particles, the simplified filter gives an error in the observed quantity
b of less than 1%. The errors in the unobserved quantity u depend strongly
on the gap between the observations and can be as large as 15%. The error
statistics in figure 6 have converged and only minor improvements can be
expected if the number of particles is increased to more than 20.
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Fig. 5. Filtering results for data collected at a high spatial resolution
(200 measurement locations). The errors at t = 0.2 of the implicit
particle filter (red), EnKF (purple) and SIR filter (green) are plotted
as a function of the number of particles. The error bars represent the
mean of the errors and mean of the standard deviations of the errors.

The EnKF requires about 500 particles to achieve the accu-
racy of the implicit filter with only 4 particles.
In the experiments, we observed that the minimization in

implicit particle filtering typically converged after 4–10 steps
(depending on r , the gap in time between observations).
The convergence criterion was to stop the iteration when the
change in F

j

was less than 10%. A more accurate minimiza-
tion did not improve the results significantly, so that we were
satisfied with a relatively crude estimate of the minimum in
exchange for a speed-up of the algorithm. We found � by
solving Eq. (11) with Newton’s method using �

0 = 0 as ini-
tial guess and observed that it converged after about eight
steps. The convergence criterion was to stop the iteration if
|
F(�) � � � ⇢

|  10�3, because the accurate solution of this
scalar equation is numerically inexpensive. We resampled us-
ing algorithm 2 in Arulampalam et al. (2002), if the effective
sample sizeMEff in Eq. (19) divided by the number of parti-
clesM is less than 90% of the number of particles.
To further investigate the performance of the filters, we

run more numerical experiments and vary the availability of
the data in time, as well as the number of particles. Figure 6
shows the results for the implicit particle filter, the simplified
implicit particle filter, the EnKF and the SIR filter for 200
measurement locations and for r = 1,2,4,10.
We observe from Fig. 6, that the error statistics of the im-

plicit particle filter have converged, so that there is no signif-
icant improvement when we increase the number of particles
to more than 10. In fact, the numerical experiments suggest
that no more than 4 particles are required here. Independent
of the gap between the observations in time, we observe an
error of less than 1% in the observed variable b. The error in

the unobserved variable u, however, depends strongly on the
gap between observations and, for a large gap, is about 15%.
The reconstructions of the observed variables by the sim-

plified implicit particle filter are rather insensitive to the
availability of data in time and, with 20 particles, the sim-
plified filter gives an error in the observed quantity b of less
than 1%. The errors in the unobserved quantity u depend
strongly on the gap between the observations and can be as
large as 15%. The error statistics in Fig. 6 have converged
and only minor improvements can be expected if the number
of particles is increased to more than 20.
The SIR filter required significantly more particles, than

the implicit filter or simplified implicit filter. Independent of
the gap between observations, the errors and their variances
are larger than for the implicit and simplified implicit filter,
even if the number of particles for SIR is set to 1000. The
EnKF performs well and, for about 500 particles, gives re-
sults that are comparable to those of the implicit particle fil-
ter. The EnKFmay give similarly accurate results at a smaller
number of particles if localization and inflation techniques
are implemented.
The errors in the reconstructions of the various filters are

not Gaussian, so that an assessment of the errors based on
the first two moments is incomplete. In the two panels on
the right of Fig. 7, we show histograms of the errors of the
implicit filter (10 particles), simplified implicit filter (20 par-
ticles), EnKF (1000 particles) and SIR filter (1000 particles)
for r = 10 model steps between observations.
We observe that the errors of the implicit filter, simplified

implicit filter and EnKF are centered to the left of the di-
agrams (at around 10% in the unobserved quantity u and
about 1% for the observed quantity b) and show a consider-
ably smaller spread than the errors of the SIR filter, which are
centered at much larger errors (20% in the unobserved quan-
tity u and about 9% for the observed quantity b). A closer
look at the distribution of the errors thus confirms our con-
clusions we have drawn from an analysis based on the first
two moments.
We further assess the performance of the filters by con-

sidering their effective sample size (19), which measures the
quality of the particles ensemble Doucet et al. (2001). A large
effective sample size indicates a good ensemble, i.e. the sam-
ples are independent and each of them contributes signifi-
cantly to the approximation of the conditional mean; a small
effective sample size indicates a “bad ensemble”, i.e. most
of the samples carry only a small weight. We computed the
effective sample size for the implicit particle filter, the sim-
plified implicit particle filter and the SIR filter after each as-
similation, and compute the average after each of 100 twin
experiments. In Table 1, we show the average effective sam-
ple size (averaged over all 100 twin experiments and scaled
by the number of particles) for a gap of r = 10 model steps
between observations.
We observe that the effective sample size of the implicit

filter is about 10 times larger than the effective sample size

www.nonlin-processes-geophys.net/19/365/2012/ Nonlin. Processes Geophys., 19, 365–382, 2012

Geomagnetism
Comparable errors for 
implicit filter O(10) 
particles, EnKF O(100) 
particles, and SIR O(1000) 
particles
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Conclusions
 Implicit sampling is 

successful in 3 
applications to nonlinear 
models in O(10) to 
O(10k) dimensions

 Able to estimate state 
and parameters; handles 
constraints and 
multiplicative noise

 Can improve results with 
adaptive refinements of 
importance density*

*see poster: Estimation of Ecological 
Model Parameters by Implicit 
Sampling, Session 1 (today)
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