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Data assimilation
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Implicit sampling
Monte Carlo method for
importance sampling
No forecast distribution,
work directly with target
Apply particle by particle
Use numerical
optimization to identify
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What makes this a good 1dea?

» Nonparametric

Strong theoretical basis for nonlinear/non-Gaussian
problems

» Sequential/on-line

Can assimilate any number of observations with each
application and discard them thereafter

» Optimized for observations

Computational resources are directed toward important
regions of sample space

Avoids sampling “blindly” like many particle filters, i.e.,
produces samples with non-negligible information

» Many implementations, tuned for application ...



Twin experiments

Shallow water

Predator-prey

Geomagnetism




1. Shallow water

State dimension O(30Kk): height and 2 velocity
components on a 100x100 horizontal grid

Weak dissipation + strong advection + forcing by
wave breaking = strong nonlinearity

Assimilate velocity data every time step at 16 points
using 10 particles
Cost fen., g% = — log [p(xk+1‘Y1:k+la Xl(f))

1

= §(Xk+1 — x*)" H (x4 41 — X7)

Target is Gaussian, find x* and H from Kalman filter
algebra
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forcing by breaking
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2. Predator-prey

Estimate 2 state variables P (prey) and Q (predator)
and 7 unknown parameters 0 = (64, ..., 0-).

dP PQ
= (01 + 62P)P + 931 0P
dQ Pe)
T 0

p (04 + 05Q)Q + 61_|_(97P

State and parameters have only one sign

Transform (anamorphosis) to variables that are more
nearly Gaussian, e.g., ( = (log P, log Q, log )



Predator-prey

» Assimilate 50 observations every 50 times steps:
all at once (smoother), cost function is

J = — 1Og [p(XO:m(k)a Hbflk)}
or sequentially (filter), cost function is
j(z) — log |:p(xm(k)—|—1:m(k’—|—1)7 Hbflzk—i—la ng:,,)(k)a Q(Z))}

» In transformed variable (, cost is nearly, but not
exactly quadratic:
optimize to find its min ¥, and Hessian H at ¢*
use Gaussian importance sampling
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(c) Smoother, estimated parameters
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Comparison of state
estimate in two cases: (a,b)
parameters fixed at
incorrect values, (c)
estimated parameters

240 particles
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Rank histogram / Talagrand diagram

Predator-prey
(smoother)

Rank histogram computed
with 240,000 particles

Noticeable drop-off in
distribution before zero



# per sq. meter

(a) Filter, estimated parameters
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2400 particles for implicit
and SIR filters and
240,000 for EnKF

EnKF covariance blows up,
works with denser
observations



3. Geomagnetism

SPDEs for velocity and magnetic field

Legendre spectral elements to transform to system of
very stiff SDEs

Observations of magnetic field only at 200 equally
spaced locations

Cost is far from quadratic: many steps between
observations

JW = — log {p(xm(k)—i—lzm(k—kl)a ‘Y1:k+17X7(7?(k))}



Geomagnetism

If target is far from
Gaussian (skew, kurtosis,
etc.), use random maps to
sample:

1. Draw z ~ N(0,I)
2. Cholesky factor H = LLT

3. Search along LTz until
proposal and target have
the same level set
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Fig. 5. Filtering results for data collected at a high spatial resolution
(200 measurement locations). The errors at t = 0.2 of the implicit
particle filter (red), EnKF (purple) and SIR filter (green) are plotted
as a function of the number of particles. The error bars represent the
mean of the errors and mean of the standard deviations of the errors.

Geomagnetism

Comparable errors for
implicit filter O(10)
particles, EnKF O(100)
particles, and SIR O(1000)
particles
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Conclusions

Implicit sampling is
successful in 3
applications to nonlinear
models in O(10) to
O(10k) dimensions

Able to estimate state
and parameters; handles
constraints and
multiplicative noise

Can improve results with o .

. . *see poster: Estimation of Ecological
adaptive refinements of  Model Parameters by Implicit
importance density* Sampling, Session 1 (today)
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