Sub-pixel temperatures estimation based on the assimilation of coarse resolution thermal infrared LST using particle filtering

Rihab MECHRI, LSCE, IPSL, France

Catherine OTTLE, LSCE, IPSL, France

Olivier PANNEKOUCKE, CNRM, France

Abdelaziz KALLEL, ISECS, Tunisia

Ahmed BEN HAMIDA, ENIS, Tunisia

→ High temporal variability

LST is a key variable to monitor energy & hydric budgets.
It can be estimated from space , from TIR radiometers .

		Spatial resolution	Temporal resolution
	SEVIRI (MSG)	3000 -5000 m	15 min
	MODIS	1000m	~1day
	AVHRR	1000m	~2-4 days
	ASTER	90m	~ 1 month

High spatial variability & heterogeneity

The monitoring of surface budgets requires :

To implement methods to estimate high spatial resolution LST from the only up-scaled and irregular observations.

What we NEED:

- A model to provide prior LST estimates and to assimilate the up-scaled observations.
 - →Land Surface Model (LSM) :
 - calculates the energy and hydric budgets
 - calculates the different interactions between soilvegetation-atmosphere.

calculates the time evolution of LST

Problem position

Quick insight of the SEtHyS Model

→SEtHyS will be used to simulate the sub-pixel temperature (T_{class_i})
 →Some of SEtHyS parameters will be calibrated in the downscaling procedure

LABORATOIRE DES SCIENCES DU CLIMAT & DE L'ENVIRONNEMENT

5

Particle Filtering (PF) What's a PF?

 A PF is an ensemble method based on Monte Carlo Sampling to approximate a probability distribution with a discrete sum of samples (ensemble members). It's an ensemble, numeric solution of the Bayesian filtering problem.

Why PF??

- Highly non linear model
- Low dimension problem (finite number of parameters, low number of land classes, etc.)
- Interesting computing time
- facility in PF implementation
- Etc.

Particle Filter general algorithm

Considering a set of particles at the time q=0; $\{x_{1,0}, x_{2,0}, x_{3,0}, ..., x_{N,0}\}$ Monte Carlo Sampling: $p(x_0) \approx \frac{1}{N} \sum_{i=1}^{N} \delta_{x_{i,0}} (x_0 = x_{i,0})$, N >> 1

> For all times q we have:

- <u>Prediction</u>: $p\left(x_{i,q}/x_{i,1:q-1}\right) \propto p\left(x_{i,q}/x_{i,q-1}\right)$

- <u>Analysis / weighting</u>: $p(x / y) = \sum w_{i,q} \delta(x_q - x_{i,q})$

with: $w_{i,q} = \frac{p(y_q / x_{i,q})}{\sum_{i=1}^{N} p(y_q / x_{i,q})}$ is the weight associated to the i-th particle

- <u>Selection/resampling</u>: $p(x_q) \approx \frac{1}{N} \sum_{i=1}^{N} \delta_{x_{i,q}}(x_q = \hat{x}_{i,q})$

Where $\hat{x}_{i,q}$ presents the most suitable particles selected with the selection/resampling algorithm (genetic algorithm).

□<u>What's a particle?</u> → The up-scaled LST & the corresponding set of

parameters (simulated with SEtHyS model)

□<u>Initialization:</u> For each land cover we:

- Randomly generate an ensemble of 'N' samples for the selected parameters (M parameters / class) with their range of variation
- Simulate the initial temperatures relative to the N samples with SEtHyS model on a daily time window.
- Assimilation window proceedings
 - SEtHyS prediction: computation of the simulated sub-pixel temperatures.
 - Particle filtering.
 - Actualization of the particles ensemble to be used for model propagation for the next assimilation window.

Coupling PF with SEtHyS model :General loop scheme

Experience framework

- Initialization step
- Create a synthetic pixel containing 3 land covers equally distributed (forest, wheat and bare soil).
- Use the meteorological forcing of Crau 2006.
- Previous sensitivity analysis : selection of the most sensible parameters (from 22 initial parameters we select 5 parameters / class).
- Generate reference sub-pixel LST for the different classes.
- Create the up-scaled observation using the reference sub-pixel temperatures

as follows:
$$\tau_{obs} = \frac{\left(\alpha_{bs}\sigma_{bs}T_{bs}^{4} + \alpha_{w}\sigma_{w}T_{w}^{4} + \alpha_{f}\sigma_{f}T_{f}^{4}\right)}{\alpha_{bs}\sigma_{bs} + \alpha_{w}\sigma_{w} + \alpha_{f}\sigma_{f}} + N\left(0,\sigma_{obs}\right)$$

- Generate the initial N sets of parameters (definition of parameter space) for the different land covers and simulate the corresponding sub-pixel temperatures .

- Calculate, for each set of parameters, the up-scaled temperatures.
- Proceed to the general loop of PF coupled with SEtHyS.

Experience specifications

- Assimilation period = 1day
- Observation frequency =1obs/10min
- Observation error variance = 1.5 K
- Size of particles ensemble N= 200
- Number of calibrated parameter/land cover =5
- Total duration of the assimilation experiment= 20 time windows = 20 days = day94 → day 114 of the year 2006
- Resampling Noise = N(0,0.01)

Downscaling results

Downscaling result for the 20th assimilation window

Downscaling results

Downscaling result for the period day 94 \rightarrow day 114

Calibration results

Bare soi

Calibration results for result for the 20th assimilation window

Calibration results

Calibration results for the period day $94 \rightarrow day 114$

16

*****Experience framework:

- Time window= 1day
- Observation frequency =1obs/10min
- Observation error variance = 1.5 K
- Size of particles ensemble N= 200
- Number of calibrated parameter/land cover =2 (bare soil :P₁= fact_{therm}, P₂= e_s; forest: P₁= fact_{therm}, P₂= e_g; wheat : P₁= fact_{therm}, P₂= e_g)
- Assimilation period = 20 time windows = 20 days = day94 \rightarrow day 114 of the year 2006
- Resampling Noise = $\mathcal{N}(0, 10^{-2})$

The efficiency index is evaluated as follow : $I = m e a n_{10 \text{ experiences}} \left(1 - \frac{R M S E_{posterior}}{R M S E_{prior}} \right)$

***We repeat the experience 10 times and average the results on 10 experiences.**

Bare soil	Wheat	Forest
I=0.85	I=0.78	I=0.89

Particle Filtering efficiency

LABORATOIRE DES SCIENCES DU CLIMAT & DE L'ENVIRONNEMENT

17

Experience framework:

- Observation error variance values : σ_o = [0.5K, 0.75K,1K, 1.25K,1.5K,1.75K, 2K,2.25K, 2.5K,2.75K, 3K,3.25K, 3.5K,3.75K, 4K]
- We vary the value of the observation error variance and evaluate the RMSE for each land cover type.

$$RMSE \quad i, j = \frac{1}{N_{period}} \sum_{m=1}^{N_{period}} \left[\sqrt{\frac{K \left(T_{i,j}^{i,j} - T_{m,q}^{i,j} \right)^{2}}{\frac{q=1}{K_{period}}} \right]$$

Where;

- 'i' is the land cover index
- 'j' is the σ_o index
- 'm' is window index
- 'q' is the time step index

→We repeat the experience 19 times and average the results on the 19 experiences.

Impact of the observation error variance

19

Conclusion and perspectives

Conclusions

- Good performances of PF on the downscaling of low spatial resolution temperatures
- Good performances of the calibration of the most sensitive parameters
- >The particle filter performances decrease with the observation error variance.

Perspectives

- Application of our approach on real TIR data and at larger scale (image)
- ✓ Application on multi-scale data (combine METEOSAT and MODIS data).
- Compare our downscaling approach to other ones (Inamdar 2008; Inamdar 2009; Kallel & al., 2012 ; Bechtel & al., 2012)

