
Ensemble data assimilation using stochastic
homogenization in a slow-fast system with tipping

points

Lewis Mitchell, Georg Gottwald∗

University of Vermont, ∗University of Sydney

International conference on ensemble methods in geophysical sciences,
Toulouse, 12 November 2012



Challenges for EnKF: Small ensemble sizes

Small ensemble sizes underestimation of Pf

larger ensembles

covariance inflation

Covariance inflation

Pf → δPf

where δ > 1
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Challenges for EnKF: Subgrid-scale phenomena

Large forecast models computationally unwieldy → How to parametrize
subgrid-scale phenomena?

Generally cannot observe fast processes ⇒
We want to use a reduced model in place of
full deterministic model in EnKF



Climate models for data assimilation

Stochastic homogenization (Khasminsky ’66, Kurtz ’73, Papanicolaou ’76) has
been recently taken up in the context of climate models (works by
Crommelin, Franzke, Majda, Harlim, Timofejev, Vanden-Eijnden).

Idea: Consider x ∈ Rn and y ∈ Rm

dx =
1

ε
f0(x, y) dt+ f1(x, y) dt

dy =
1

ε2
g0(x, y) dt+

1

ε
σ(x, y) dWt

(For purely deterministic dynamics see

Melbourne and Stuart, Nonlinearity 2011)

Assume the fast y-process is

ergodic, and the average of f0 over

this measure is zero; then the

statistics of the slow x-dynamics can

be approximated in the limit ε→ 0

by

dX = F (X) dt+ Σ(X) dBt



Toy model

4-D slow-fast system (Givon et al., Nonlinearity 17 (2004))

dx

dt
= x− x3 +

4

90ε
y2

dy1
dt

=
10

ε2
(y2 − y1)

dy2
dt

=
1

ε2
(28y1 − y2 − y1y3)

dy3
dt

=
1

ε2
(y1y2 −

8

3
y3)
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Toy model - Stochastic model reduction

The time scale separation and ergodicity of the y-dynamics imply the
existence of a reduced model, using homogenization:

dX

dt
= X −X3 + σ

dW

dt

where σ is given by the integrated autocorrelation function of y2:

σ2

2
= −

(
4

90

)2 ∫ ∞
0

y2(t) lim
T→∞

1

T

∫ T

0
y2(t+ s)dsdt.

Numerically, σ2 ≈ 0.113.



Toy model

Can be modelled as a particle in potential well:

V (x) =
x4

4
− x2

2

Then
dX

dt
= −V ′(x) + σ

dW

dt
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Time scales
Transit time τt (Kramers, 1940)

Time taken to travel between metastable states
x∗ = ±1 is τt = 5.90.

Exit time τe (Kramers, 1940)

Average residence time in one well τe = 75.6769 (for σ2 = 0.126).

Decorrelation time τcorr
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Sensitivity to σ2

σ2 = 0.1, σ2 = 0.113, σ2 = 0.126, σ2 = 0.15
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So σ2 = 0.113 produces the best “climate”.



Data assimilation experiment

Twin experiment

1 Generate “truth” from time series of full deterministic model

2 Create “observations” of slow x-variable by adding Gaussian noise
3 Attempt to recover truth using

I Full deterministic 4D forecast model
I Reduced stochastic 1D model

“Big” Question: Can reduced stochastic climate models be beneficial
for forecasting and prediction?

Under what circumstances and why can stochastic reduced models be
beneficial as forecast models in an ensemble Kalman filter setting?

Can we achieve

computational gain?

better analysis skill?
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Numerical results
Full deterministic model:

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−2

−1

0

1

2

t

x

Reduced climate model:

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−2

−1

0

1

2

t

x



Numerical results
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Numerical results

We define the skill S =
Efull

Eclimate
, S > 1 is good!

Blue - all analyses, Green - metastable states, Red - transitions

10
0

10
1

10
2

10
3

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

S

∆tobs

τeτt τcorr



Numerical results

σ2 = 0.1, σ2 = 0.113, σ2 = 0.126, σ2 = 0.15
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Numerical results

The numerical results suggest that stochastic climate models are

beneficial for observation time intervals ∆tobs ∈ (τt, τcorr)

good at capturing the transitions between slow metastable states

perform better than full system for diffusion larger than the “correct”
value: σ2 > 0.113

So, if the climate model fails to accurately reproduce the statistics of the
full model, why does it perform better here?
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Numerical results

Small ensemble sizes underestimation of Pf

larger ensembles

covariance inflation

Increasing ensemble size k:
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Ranked probability histograms

sort the forecast ensemble Xf = [xf,1, xf,2, ..., xf,k] and create bins
(−∞, xf,1], (xf,1, xf,2], ... , (xf,k,∞) at each forecast step

increment whichever bin the actual truth falls into at each forecast
step

Convex histogram: insufficient ensemble spread
Concave histogram: too much ensemble spread
Flat histogram: reliable ensemble for which each ensemble member has
equal probability of being nearest to the truth



Ensemble spread for different forecast models
All variables:
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Conclusions and further work

Take-home point:

In the context of DA, models which produce best “climate” need not
produce best analyses (and vice versa).

We can incorporate climatological information into the forecast step
through stochastic parametrization of fast dynamics in the forecast model.
This can produce more skilful analyses, because it

creates ensembles with greater spread

simulates larger ensembles (or covariance inflation)

increases ensemble reliability

We will:

Attack this problem of producing analyses that are consistent with
climate statistics more directly

Extend to the case with bifurcation-induced tipping
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Bifurcation-induced tipping

Induce tipping by time-varying bifurcation parameter:

dx

dt
= x− x3+µ+

κ

ε
y2
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Homogenization

Consider the set of ODEs

dx

dt
=

1

ε
f0(x, y) + f1(x, y)

dy

dt
=

1

ε2
g(x, y).

The backward Kolmogorov equation for v(z, t) = E(φ(z(t))|z(0) = z0),
z = (x, y) is

∂v

∂t
=

1

ε2
L0v +

1

ε
L1v + L2v

where
L0 = g · ∇y, L1 = f0 · ∇x, L2 = f1 · ∇x



Homogenization
Substituting an ansatz (Papanicolou (1976)) v = v0 + εv1 + ε2v2 + ... and
equating orders gives

O

(
1

ε2

)
: L0v0 = 0

⇒ v0 = v0(x, t)

O

(
1

ε

)
: L0v1 = −L1v0

⇒ 〈L1v0〉ρ∞ = 0

⇒ v1 = −L−1
0 L1v0

O(1) : L0v2 =
∂v0

∂t
− L1v1 − L2v0

and the solvability condition for the O(1) expression is

∂v0

∂t
=

∫
L2v0ρ∞(y)dy −

∫
L1L−1

0 L1v0ρ∞(y)dy

= x(1− x2)
∂

∂x
v0 −

(
4

90

)2 〈
y2L−1

0 y2

〉
ρ∞

∂2

∂x2
v0
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Homogenization

Define, for every function h with 〈h〉ρ∞ = 0,

H(x, y) = −
∫ ∞

0
eL0th dt .

As L0 corresponds to an ergodic process, L0H = h. Hence

〈y2L−1
0 y2〉ρ∞ = −

∫ ∞
0
〈y2e

L0ty2〉ρ∞ dt

= −
∫ ∞

0
{ lim
T→∞

1

T

∫ T

0
y2(s)y2(t+ s)ds} dt =

σ2

2
.

Backward Kolmogorov equation is

∂

∂t
v0 = x(1− x2)

∂

∂x
v0 +

σ2

2

∂2

∂x2
v0.



Exit time

Let D be the “well” domain for the particle. Then we wish to find the
sojourn time τxD = inf{t ≥ 0 : X /∈ D}. Then the exit time τe is the
average sojourn time

τe = E(τxD).

Theorem

The exit time τe is the solution of the boundary value problem

Lτ = −1 x ∈ D
τ = 0 x ∈ ∂D

where L = −V ′(x) d
dx + 1

2σ
2 d2

dx2
is the generator of the reduced model.

(Gardiner, 2003)



Exit time

We can find the average exit time for the particle from a well

τe(x) =
2

σ2

∫ 0

x
exp

(
2V (y)

σ2

)∫ y

−1
exp

(−2V (z)

σ2

)
dzdy

Gives exit time τe = 75.6769
(for σ2 = 0.126)
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The Ensemble Kalman Filter (EnKF)

Step 3: Update of the ensemble

The ensemble needs to be consistent with

Pa =
1

k − 1
Z′a
[
Z′a
]T

Method of ensemble square root filters:

Ensemble transform Kalman filter (ETKF) (Tippett et al 2003):
Z′a = Z′fS with S ∈ Rk×k

Ensemble adjustment Kalman filter (EAKF) (Anderson 2001):
Z′a = AZ′f with A ∈ RN×N

Step 4: Update of the forecast

Set Zb = Za to propagate the ensemble forward again with the full
dynamics to the next observation time
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Parameter estimation

Estimate σ2 from a long trajectory partitioned into bins [X,X + ∆X],
sampled at coarse sampling time h� dt

σ2 ≈ S(X) =
1

h
〈(xn+1 − xn)2〉

∣∣∣
xn∈(X,X+∆X)

.
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Data assimilation: Weather vs. Climate

Weather: Climate:
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A challenge for data assimilation in climate problems

Weather models capture short-term dynamics well, but not long-term.

Climate modelers interested in distribution of states averaged over
long time scales (capturing the pdf)

Uncertainty in how to find balance between short-term (window of
predictability) and long-term (climate, pdf) models.

We will study a situation where it is
preferable to use a “worse” model
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Summary of Ensemble Kalman Filtering (EnKF)
Step 1: Forecast step

Zf = F (Zb)

Pf =
1

k − 1
Z′f (t)[Z

′
f (t)]

T

Step 2: Analysis step

za = zf +Kobs(y −Hzf )

Kobs = PaH
TR−1

obs , Pa =
(
P−1

f +HTR−1
obsH

)−1

Step 3: Updating the ensemble

The ensemble needs to be consistent with

Pa =
1

k − 1
Z′a

[
Z′a

]T
by means of a transformation Z′a = Z′fS (we will use the ETKF)

Step 4: Update of the forecast

Set Zb = Za, propagate the ensemble forward again with the forecast model.


